作者热门文章
- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我一直在尝试弄清楚如何使用 Python 中的 Microsoft Azure 语音识别服务制作字幕,但无法弄清楚。我遵循了其他人在这里回答的关于获取单个单词的提示,但即使将它们格式化为 .srt 或 .vtt 似乎也很复杂。代码如下:
import azure.cognitiveservices.speech as speechsdk
def speech_recognize_continuous_from_file():
"""performs continuous speech recognition with input from an audio file"""
# <SpeechContinuousRecognitionWithFile>
speech_key, service_region = "{api-key}", "{serive-region}"
speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)
audio_filename = "{for example: video.wav}"
audio_config = speechsdk.audio.AudioConfig(filename=audio_filename)
speech_config.speech_recognition_language="en-US"
speech_config.request_word_level_timestamps()
speech_config.enable_dictation()
speech_config.output_format = speechsdk.OutputFormat(1)
speech_recognizer = speechsdk.SpeechRecognizer(speech_config=speech_config, audio_config=audio_config)
done = False
results = []
transcript = []
words = []
def handle_final_result(evt):
import json
results = json.loads(evt.result.json)
transcript.append(results['DisplayText'])
confidence_list_temp = [item.get('Confidence') for item in results['NBest']]
max_confidence_index = confidence_list_temp.index(max(confidence_list_temp))
words.extend(results['NBest'][max_confidence_index]['Words'])
def stop_cb(evt):
"""callback that stops continuous recognition upon receiving an event `evt`"""
print('CLOSING on {}'.format(evt))
speech_recognizer.stop_continuous_recognition()
nonlocal done
done = True
print("Transcript display list:\n")
print(transcript)
print("\nWords\n")
print(words)
print("\n")
speech_recognizer.recognized.connect(handle_final_result)
# Connect callbacks to the events fired by the speech recognizer
speech_recognizer.recognizing.connect(lambda evt: format(evt))
speech_recognizer.recognized.connect(lambda evt: format(evt))
speech_recognizer.session_started.connect(lambda evt: format(evt))
speech_recognizer.session_stopped.connect(lambda evt: format(evt))
speech_recognizer.canceled.connect(lambda evt: format(evt))
# stop continuous recognition on either session stopped or canceled events
speech_recognizer.session_stopped.connect(stop_cb)
speech_recognizer.canceled.connect(stop_cb)
# Start continuous speech recognition
speech_recognizer.start_continuous_recognition()
while not done:
time.sleep(.5)
with open('Azure_Raw.txt','w') as f:
f.write('\n'.join(results))
sample_long_running_recognize(storage_uri)
我在字幕上找到的唯一“教程”是 Google Cloud 教程,它给出了我正在寻找的结果(是的,我自己测试过),但 Azure 显然根本不像 G 那样工作-云:https://medium.com/searce/generate-srt-file-subtitles-using-google-clouds-speech-to-text-api-402b2f1da3bd
基本上:我如何将 3 秒的语音文本转换为 .srt 格式,如下所示:
1
00:00:00,000 --> 00:00:03,000
This is the first sentence that
2
00:00:03,000 --> 00:00:06,000
continues after 3 seconds or so
最佳答案
因此,如果您仔细观察 - Azure 语音服务的 JSON 输出 - 它与其他服务的输出略有不同。
对于上述配置,在选择最佳匹配后,输出如下所示
[{'Duration': 3900000, 'Offset': 500000, 'Word': "what's"},
{'Duration': 1300000, 'Offset': 4500000, 'Word': 'the'},
{'Duration': 2900000, 'Offset': 5900000, 'Word': 'weather'},
{'Duration': 4800000, 'Offset': 8900000, 'Word': 'like'}]
共有三个输出 - 单词、持续时间和偏移量
您必须利用它来构建您的时间表
import azure.cognitiveservices.speech as speechsdk
import os
import time
import pprint
import json
import srt
import datetime
path = os.getcwd()
# Creates an instance of a speech config with specified subscription key and service region.
# Replace with your own subscription key and region identifier from here: https://aka.ms/speech/sdkregion
speech_key, service_region = "<>", "<>"
speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)
# Creates an audio configuration that points to an audio file.
# Replace with your own audio filename.
audio_filename = "sample.wav"
audio_input = speechsdk.audio.AudioConfig(filename=audio_filename)
# Creates a recognizer with the given settings
speech_config.speech_recognition_language="en-US"
speech_config.request_word_level_timestamps()
speech_config.enable_dictation()
speech_config.output_format = speechsdk.OutputFormat(1)
speech_recognizer = speechsdk.SpeechRecognizer(speech_config=speech_config, audio_config=audio_input)
#result = speech_recognizer.recognize_once()
all_results = []
results = []
transcript = []
words = []
#https://learn.microsoft.com/en-us/python/api/azure-cognitiveservices-speech/azure.cognitiveservices.speech.recognitionresult?view=azure-python
def handle_final_result(evt):
import json
all_results.append(evt.result.text)
results = json.loads(evt.result.json)
transcript.append(results['DisplayText'])
confidence_list_temp = [item.get('Confidence') for item in results['NBest']]
max_confidence_index = confidence_list_temp.index(max(confidence_list_temp))
words.extend(results['NBest'][max_confidence_index]['Words'])
done = False
def stop_cb(evt):
print('CLOSING on {}'.format(evt))
speech_recognizer.stop_continuous_recognition()
global done
done= True
speech_recognizer.recognized.connect(handle_final_result)
#Connect callbacks to the events fired by the speech recognizer
speech_recognizer.recognizing.connect(lambda evt: print('RECOGNIZING: {}'.format(evt)))
speech_recognizer.recognized.connect(lambda evt: print('RECOGNIZED: {}'.format(evt)))
speech_recognizer.session_started.connect(lambda evt: print('SESSION STARTED: {}'.format(evt)))
speech_recognizer.session_stopped.connect(lambda evt: print('SESSION STOPPED {}'.format(evt)))
speech_recognizer.canceled.connect(lambda evt: print('CANCELED {}'.format(evt)))
# stop continuous recognition on either session stopped or canceled events
speech_recognizer.session_stopped.connect(stop_cb)
speech_recognizer.canceled.connect(stop_cb)
speech_recognizer.start_continuous_recognition()
while not done:
time.sleep(.5)
print("Printing all results:")
print(all_results)
speech_to_text_response = words
def convertduration(t):
x= t/10000
return int((x / 1000)), (x % 1000)
##-- Code to Create Subtitle --#
#3 Seconds
bin = 3.0
duration = 0
transcriptions = []
transcript = ""
index,prev=0,0
wordstartsec,wordstartmicrosec=0,0
for i in range(len(speech_to_text_response)):
#Forms the sentence until the bin size condition is met
transcript = transcript + " " + speech_to_text_response[i]["Word"]
#Checks whether the elapsed duration is less than the bin size
if(int((duration / 10000000)) < bin):
wordstartsec,wordstartmicrosec=convertduration(speech_to_text_response[i]["Offset"])
duration= duration+speech_to_text_response[i]["Offset"]-prev
prev=speech_to_text_response[i]["Offset"]
#transcript = transcript + " " + speech_to_text_response[i]["Word"]
else :
index=index+1
#transcript = transcript + " " + speech_to_text_response[i]["Word"]
transcriptions.append(srt.Subtitle(index, datetime.timedelta(0, wordstartsec, wordstartmicrosec), datetime.timedelta(0, wordstartsec+bin, 0), transcript))
duration = 0
#print(transcript)
transcript=""
transcriptions.append(srt.Subtitle(index, datetime.timedelta(0, wordstartsec, wordstartmicrosec), datetime.timedelta(0, wordstartsec+bin, 0), transcript))
subtitles = srt.compose(transcriptions)
with open("subtitle.srt", "w") as f:
f.write(subtitles)
<小时/>
附上输出供您引用:
<小时/>希望这有帮助:)
关于python - Python 中的 Microsoft Azure 语音转文本功能的字幕/说明文字,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62554058/
我是一名优秀的程序员,十分优秀!