gpt4 book ai didi

python-2.7 - 使用具有多个输入的网络进行 Hyperas 网格搜索

转载 作者:行者123 更新时间:2023-12-02 22:45:14 33 4
gpt4 key购买 nike

我目前在使用 hyperas 时遇到问题我的网络上的优化器具有多个输入..

这就是我的实现方式:

def data():
X_train, Y_train = next(train_generator())
X_test, Y_test = next(test_generator())

datagen = ImageDataGenerator()
train_list = []
for input in X_train:
train_list.append(datagen.fit(input))

return datagen, train_list, Y_train, X_test, Y_test

我正在使用 data_generator,因为所有数据都不能包含在 RAM 中。

基于data example他们做了,我做了这个:

def fws(datagen, X_train, Y_train, X_test, Y_test):
# Input shape: (batch_size,40,45,3)
# Output shape: (1,15,50)
# Number of units in conv_feature_map = splitd
filter_size = 8
pooling_size = 28
stride_step = 2
pool_splits = ((splits - pooling_size)+1)/2
temp_list = []
sun_temp_list = []
conv_featur_map = []
pool_feature_map = []
print "Printing shapes"

list_of_input = [Input(shape = (window_height,total_frames_with_deltas,3)) for i in range(splits)]

# Convolution
shared_conv = Conv2D(filters = 150, kernel_size = (filter_size,45), activation='relu')
for i in range(splits):
conv_featur_map.append(shared_conv(list_of_input[i]))

# Pooling
input = Concatenate()(conv_featur_map)
input = Reshape((splits,-1))(input)
pooled = MaxPooling1D(pool_size = pooling_size, strides = stride_step)(input)

# fc
dense1 = Dense(units = 1000, activation = 'relu', name = "dense_1")(pooled)
dense2 = Dense(units = 1000, activation = 'relu', name = "dense_2")(dense1)
dense3 = Dense(units = 50 , activation = 'softmax', name = "dense_3")(dense2)

model = Model(inputs = list_of_input , outputs = dense3)
sgd = keras.optimizers.SGD(lr = {{uniform(0, 1)}}, decay = {{uniform(0, 1)}}, momentum = {{uniform(0, 1)}}, nesterov = True)
model.compile(loss="categorical_crossentropy", optimizer=sgd , metrics = [metrics.categorical_accuracy])

hist_current = model.fit_generator(datagen.flow(X_train, Y_train),
steps_per_epoch=32,
epochs = 1000,
verbose = 1,
validation_data = (X_test, Y_test),
validation_steps=32,
pickle_safe = True,
workers = 4)

score, acc = model.evaluate(X_test, Y_test, verbose=0)

return {'loss': -acc, 'status': STATUS_OK, 'model': model}

该网络的特殊之处在于它接受多个输入。我本可以让它只接受一个输入并使用 lambda 层来分割它,但由于分割非常乏味,我决定将其存储为 split,并以 split 的形式提供它,从而创建 33 个输入。除此之外,网络非常标准。

(网络可视化)

Enter image description here

if __name__ == '__main__':

datagen, X_train, Y_train, X_test, Y_test = data()

best_run, best_model = optim.minimize(model=fws,
data=data,
algo=tpe.suggest,
max_evals=5,
trials=Trials())

print("Evalutation of best performing model:")
print(best_model.evaluate(X_test, Y_test))

这是我开始优化的地方,也是我收到错误消息的地方:

Traceback (most recent call last):
File "keras_cnn_phoneme_original_fit_generator_hyperas.py", line 211, in <module>
trials=Trials())
File "/usr/local/lib/python2.7/dist-packages/hyperas/optim.py", line 43, in minimize
notebook_name=notebook_name, verbose=verbose)
File "/usr/local/lib/python2.7/dist-packages/hyperas/optim.py", line 63, in base_minimizer
model_str = get_hyperopt_model_string(model, data,functions,notebook_name, verbose, stack)
File "/usr/local/lib/python2.7/dist-packages/hyperas/optim.py", line 130, in get_hyperopt_model_string
imports = extract_imports(cleaned_source, verbose)
File "/usr/local/lib/python2.7/dist-packages/hyperas/utils.py", line 44, in extract_imports
import_parser.visit(tree)
File "/usr/lib/python2.7/ast.py", line 241, in visit
return visitor(node)
File "/usr/lib/python2.7/ast.py", line 249, in generic_visit
self.visit(item)
File "/usr/lib/python2.7/ast.py", line 241, in visit
return visitor(node)
File "/usr/local/lib/python2.7/dist-packages/hyperas/utils.py", line 14, in visit_Import
if (self._import_asnames(node.names)!=''):
File "/usr/local/lib/python2.7/dist-packages/hyperas/utils.py", line 36, in _import_asnames
return ''.join(asname)
TypeError: sequence item 0: expected string, NoneType found

我不知道如何解释这个错误。这是实现错误还是库中的错误?我不知道...

一个最小的工作示例:

import numpy as np
import re
from keras.utils import np_utils
from keras import metrics
import keras
from keras.models import Sequential
from keras.optimizers import SGD
import scipy
from keras.layers.core import Dense, Activation, Lambda, Reshape,Flatten
from keras.layers import Conv1D,Conv2D,MaxPooling2D, MaxPooling1D, Reshape
#from keras.utils.visualize_util import plot
from keras.utils import np_utils
from keras.models import Model
from keras.layers import Input, Dense
from keras.layers import Dropout
from keras import backend as K
from keras.layers.merge import Concatenate
from keras.models import load_model
from keras.utils import plot_model
from keras.preprocessing.image import ImageDataGenerator
import math
import random
from keras.callbacks import ModelCheckpoint
import tensorflow as tf
from hyperopt import Trials, STATUS_OK, tpe
from hyperas import optim
from hyperas.distributions import uniform

def train_generator():
while True:
train_input = np.random.randint(100,size=(1,33,8,45,3))
train_input_list = np.split(train_input,33,axis=1)

for i in range(len(train_input_list)):
train_input_list[i] = train_input_list[i].reshape(1,8,45,3)

train_output = np.random.randint(100,size=(1,3,50))
yield (train_input_list, train_output)

def test_generator():
while True:
test_input = np.random.randint(100,size=(1,33,8,45,3))
test_input_list = np.split(test_input,33,axis=1)

for i in range(len(test_input_list)):
test_input_list[i] = test_input_list[i].reshape(1,8,45,3)

test_output = np.random.randint(100,size=(1,3,50))

yield (test_input_list, test_output)

def data():
X_train, Y_train = next(train_generator())
X_test, Y_test = next(test_generator())

datagen = ImageDataGenerator()
train_list = []
for input in X_train:
train_list.append(datagen.fit(input))

return datagen, train_list, Y_train, X_test, Y_test

def fws(datagen, X_train, Y_train, X_test, Y_test):
# Input shape: (batch_size,40,45,3)
# Output shape: (1,15,50)
# Number of units in conv_feature_map = splitd
filter_size = 8
pooling_size = 28
stride_step = 2
pool_splits = ((splits - pooling_size)+1)/2
temp_list = []
sun_temp_list = []
conv_featur_map = []
pool_feature_map = []
print "Printing shapes"

list_of_input = [Input(shape = (8,45,3)) for i in range(33)]

# Convolution
shared_conv = Conv2D(filters = 150, kernel_size = (filter_size,45), activation='relu')
for i in range(splits):
conv_featur_map.append(shared_conv(list_of_input[i]))

# Pooling
input = Concatenate()(conv_featur_map)
input = Reshape((splits,-1))(input)
pooled = MaxPooling1D(pool_size = pooling_size, strides = stride_step)(input)

#reshape = Reshape((3,-1))(pooled)

#fc
dense1 = Dense(units = 1000, activation = 'relu', name = "dense_1")(pooled)
dense2 = Dense(units = 1000, activation = 'relu', name = "dense_2")(dense1)
dense3 = Dense(units = 50 , activation = 'softmax', name = "dense_3")(dense2)


model = Model(inputs = list_of_input , outputs = dense3)
sgd = keras.optimizers.SGD(lr = {{uniform(0, 1)}}, decay = {{uniform(0, 1)}}, momentum = {{uniform(0, 1)}}, nesterov = True)
model.compile(loss="categorical_crossentropy", optimizer=sgd , metrics = [metrics.categorical_accuracy])

hist_current = model.fit_generator(datagen.flow(X_train, Y_train),
steps_per_epoch=32,
epochs = 1000,
verbose = 1,
validation_data = (X_test, Y_test),
validation_steps=32,
pickle_safe = True,
workers = 4)

score, acc = model.evaluate(X_test, Y_test, verbose=0)

return {'loss': -acc, 'status': STATUS_OK, 'model': model}

if __name__ == '__main__':

datagen, X_train, Y_train, X_test, Y_test = data()

best_run, best_model = optim.minimize(model=fws,
data=data,
algo=tpe.suggest,
max_evals=5,
trials=Trials())

print("Evalutation of best performing model:")
print(best_model.evaluate(X_test, Y_test))

最佳答案

我认为您的问题与data函数有关。

这里:

datagen, X_train, Y_train, X_test, Y_test = data()

X_train对应于train_list,其生成方式为:

datagen = ImageDataGenerator()
train_list = []
for input in X_train:
train_list.append(datagen.fit(input))

所以train_list不是一个数组。它只是一个包含 datagen.fit 返回内容的列表,即 None

关于python-2.7 - 使用具有多个输入的网络进行 Hyperas 网格搜索,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43796720/

33 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com