gpt4 book ai didi

typeclass - 错误消息 "setoid rewrite failed: UNDEFINED EVARS"是什么意思?

转载 作者:行者123 更新时间:2023-12-02 22:22:16 26 4
gpt4 key购买 nike

我最近经常看到这种错误:

Error:
Tactic failure: setoid rewrite failed: Unable to satisfy the following constraints:
UNDEFINED EVARS:
?X1700==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 |- relation M] (internal placeholder) {?r}
?X1701==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 (do_subrelation:=do_subrelation)
|- Proper
(equiv ==>
?X1700@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0}) (sm c)] (internal placeholder) {?p}
?X1705==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 |- relation M] (internal placeholder) {?r0}
?X1706==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 |- relation M] (internal placeholder) {?r1}
?X1707==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 (do_subrelation:=do_subrelation)
|- Proper
(?X1700@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} ==>
?X1706@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} ==>
?X1705@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0}) sg_op] (internal placeholder) {?p0}
?X1708==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0
|- ProperProxy
?X1706@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} (- sm c mon_unit)] (internal placeholder) {?p1}
?X1710==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 |- relation M] (internal placeholder) {?r2}
?X1711==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 (do_subrelation:=do_subrelation)
|- Proper
(?X1705@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} ==>
?X1710@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} ==> flip impl) equiv] (internal placeholder) {?p2}
?X1712==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0
|- ProperProxy
?X1710@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} mon_unit] (internal placeholder) {?p3}
.

这个错误想告诉我什么?作为引用,我最近在研究以下引理时看到了这一点:

From MathClasses.interfaces Require Import
abstract_algebra vectorspace canonical_names.
From MathClasses.theory Require Import groups.
Lemma mult_munit `{Module R M} : forall c : R, sm c mon_unit = mon_unit.
intros.
rewrite <- right_identity.
assert (intermediate : mon_unit = sm c mon_unit & - sm c mon_unit).
{
rewrite right_inverse; reflexivity.
}
rewrite intermediate at 2.
rewrite associativity.
rewrite <- distribute_l.
assert (forall x y : M, x = y -> x & sm c mon_unit = y & sm c mon_unit).
{
intros.
rewrite H0.
reflexivity.
}
rewrite right_identity.

我在使用数学类库进行证明时经常看到这种情况。

最佳答案

错误信息给了我们一个提示:|- 正确(相当于 ==> ....

重写失败,因为scalar_mult函数(其符号为·)缺少一个非常重要的属性:它正确Proper 函数是一个尊重等价性的函数 - 请记住 Math-Classes 库中的所有内容都定义为等价性,甚至 = 也是 equiv< 的表示法,而不是eq 。更正式地说,如果对于任何等效的 xx' (x'),(一元)函数 f 就是正确。 >x = x'(数学类用语)),xx' 的图像也是等效的:f x = f x'.

x 不是一个时,我们需要这个 Proper 属性才能将 x 重写为 x' “独立”变量,但将 f 应用于它。

修复错误的一种方法是在 Module 类型类的定义中添加一个附加字段:

sm_proper   :> Proper ((=) ==> (=) ==> (=)) (·)

上面说 (·) 是一个二元函数,它的两个参数都是等价的。

像这样

Class Module (R M : Type)
{Re Rplus Rmult Rzero Rone Rnegate}
{Me Mop Munit Mnegate}
{sm : ScalarMult R M}
:=
{ lm_ring :>> @Ring R Re Rplus Rmult Rzero Rone Rnegate
; lm_group :>> @AbGroup M Me Mop Munit Mnegate
; lm_distr_l :> LeftHeteroDistribute (·) (&) (&)
; lm_distr_r :> RightHeteroDistribute (·) (+) (&)
; lm_assoc :> HeteroAssociative (·) (·) (·) (.*.)
; lm_identity :> LeftIdentity (·) 1
; sm_proper :> Proper ((=) ==> (=) ==> (=)) (·) (* new! *)
}.

例如SemiGroup 有一个类似的 & 字段:

Class SemiGroup {Aop: SgOp A} : Prop :=
{ sg_setoid :> Setoid A
; sg_ass :> Associative (&)
; sg_op_proper :> Proper ((=) ==> (=) ==> (=)) (&) }.

修改后一切都应该正常:

Lemma mult_munit `{Module R M} :
forall c : R, c · mon_unit = mon_unit.
Proof.
intro c.
rewrite <- right_identity.
assert (intermediate : mon_unit = c · mon_unit & - (c · mon_unit)) by
now rewrite right_inverse.
rewrite intermediate at 2.
rewrite associativity.
rewrite <- distribute_l.
rewrite right_identity.
apply right_inverse.
Qed.

我必须补充一点,还有另一种方法可以证明这个引理,但是 Coq 不知何故无法在没有轻推的情况下找到 LeftCancellation 类型类的实例(显然这个定律在每个组中都成立, MathClasses.theory.groups 已导入):



  intro c.
enough ((c · mon_unit) & (c · mon_unit) = c · mon_unit & mon_unit).
apply (left_cancellation (&)) in H0.
assumption.
Print Instances LeftCancellation. (* ! *)
apply LeftCancellation_instance_0. (* this is ugly, but Coq doesn't use this instance, defined in MathClasses.theory.groups *)
rewrite <- distribute_l.
now rewrite !right_identity.

这是完整的开发过程:

From MathClasses.interfaces
Require Import abstract_algebra orders.
From MathClasses.theory
Require Import groups.

(** Scalar multiplication function class *)
Class ScalarMult K V := scalar_mult: K → V → V.
Instance: Params (@scalar_mult) 3.

Infix "·" := scalar_mult (at level 50) : mc_scope.
Notation "(·)" := scalar_mult (only parsing) : mc_scope.
Notation "( x ·)" := (scalar_mult x) (only parsing) : mc_scope.
Notation "(· x )" := (λ y, y · x) (only parsing) : mc_scope.

(** The inproduct function class *)
Class Inproduct K V := inprod : V → V → K.
Instance: Params (@inprod) 3.

Notation "⟨ u , v ⟩" := (inprod u v) (at level 51) : mc_scope.
Notation "⟨ u , ⟩" := (λ v, ⟨u,v⟩) (at level 50, only parsing) : mc_scope.
Notation "⟨ , v ⟩" := (λ u, ⟨u,v⟩) (at level 50, only parsing) : mc_scope.
Notation "x ⊥ y" := (⟨x,y⟩ = 0) (at level 70) : mc_scope.

(** The norm function class *)
Class Norm K V := norm : V → K.
Instance: Params (@norm) 2.

Notation "∥ L ∥" := (norm L) (at level 50) : mc_scope.
Notation "∥·∥" := norm (only parsing) : mc_scope.

(** Let [M] be an R-Module. *)
Class Module (R M : Type)
{Re Rplus Rmult Rzero Rone Rnegate}
{Me Mop Munit Mnegate}
{sm : ScalarMult R M}
:=
{ lm_ring :>> @Ring R Re Rplus Rmult Rzero Rone Rnegate
; lm_group :>> @AbGroup M Me Mop Munit Mnegate
; lm_distr_l :> LeftHeteroDistribute (·) (&) (&)
; lm_distr_r :> RightHeteroDistribute (·) (+) (&)
; lm_assoc :> HeteroAssociative (·) (·) (·) (.*.)
; lm_identity :> LeftIdentity (·) 1
; sm_proper :> Proper ((=) ==> (=) ==> (=)) (·)
}.

Lemma mult_munit `{Module R M} :
forall c : R, c · mon_unit = mon_unit.
Proof.
intro c.
rewrite <- right_identity.
assert (intermediate : mon_unit = c · mon_unit & - (c · mon_unit)) by
now rewrite right_inverse.
rewrite intermediate at 2.
rewrite associativity.
rewrite <- distribute_l.
rewrite right_identity.
apply right_inverse.

(* alternative proof, which doesn't quite work *)
Restart.
intro c.
enough ((c · mon_unit) & (c · mon_unit) = c · mon_unit & mon_unit).
apply (left_cancellation (&)) in H0.
assumption.
Print Instances LeftCancellation.
apply LeftCancellation_instance_0.
rewrite <- distribute_l.
now rewrite !right_identity.
Qed.

关于typeclass - 错误消息 "setoid rewrite failed: UNDEFINED EVARS"是什么意思?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40624302/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com