- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试获取基于滞后/转发的函数应用程序。我广泛使用 data.table
我什至有工作代码,但知道 data.table
的强大功能我认为必须有一种更简单的方法来实现相同的可能改进性能(我在函数内部创建了很多变量)。下面是函数的工作代码(在 https://gist.github.com/tomaskrehlik/5262087#file-gistfile1-r 中可用)
# Lag-function lags the given variable by the date_variable
lag_variable <- function(data, variable, lags, date_variable = c("Date")) {
if (lags == 0) {
return(data)
}
if (lags>0) {
name <- "lag"
} else {
name <- "forward"
}
require(data.table)
setkeyv(data, date_variable)
if (lags>0) {
data[,index:=seq(1:.N)]
} else {
data[,index:=rev(seq(1:.N))]
}
setkeyv(data, "index")
lags <- abs(lags)
position <- which(names(data)==variable)
for ( j in 1:lags ) {
lagname <- paste(variable,"_",name,j,sep="")
lag <- paste("data[, ",lagname,":=data[list(index-",j,"), ",variable,", roll=TRUE][[",position,"L]]]", sep = "")
eval(parse( text = lag ))
}
setkeyv(data, date_variable)
data[,index:=NULL]
}
# window_func applies the function to the lagged or forwarded variables created by lag_variable
window_func <- function(data, func.name, variable, direction = "window", steps, date_variable = c("Date"), clean = TRUE) {
require(data.table)
require(stringr)
transform <- match.fun(func.name)
l <- length(names(data))
if (direction == "forward") {
lag_variable(data, variable, -steps, date_variable)
cols <- which((!(is.na(str_match(names(a), paste(variable,"_forward(",paste(1:steps,collapse="|"),")",sep=""))[,1])))*1==1)
} else {
if (direction == "backward") {
lag_variable(data, variable, steps, date_variable)
cols <- which((!(is.na(str_match(names(a), paste(variable,"_lag(",paste(1:steps,collapse="|"),")",sep=""))[,1])))*1==1)
} else {
if (direction == "window") {
lag_variable(data, variable, -steps, date_variable)
lag_variable(data, variable, steps, date_variable)
cols <- which((!(is.na(str_match(names(a), paste(variable,"_lag(",paste(1:steps,collapse="|"),")",sep=""))[,1])))*1==1)
cols <- c(cols,which((!(is.na(str_match(names(a), paste(variable,"_forward(",paste(1:steps,collapse="|"),")",sep=""))[,1])))*1==1))
} else {
stop("The direction must be either backward, forward or window.")
}
}
}
data[,transf := apply(data[,cols, with=FALSE], 1, transform)]
if (clean) {
data[,cols:=NULL,with=FALSE]
}
return(data)
}
# Typical use:
# I have a data.table DT with variables Date (class IDate), value1, value2
# I want to get cumulative sum of next five days
# window_func(DT, "sum", "value1", direction = "forward", steps = 5)
编辑:示例数据可以通过以下方式创建:
a <- data.table(Date = 1:1000, value = rnorm(1000))
对于每个日期(这里的整数仅作为示例,无关紧要),我想创建接下来十个观察值的总和。要运行代码并获得输出,请执行以下操作:
window_func(data = a, func.name = "sum", variable = "value",
direction = "forward", steps = 10, date_variable = "Date", clean = TRUE)
该函数首先获取变量并创建十个滞后变量(使用函数 lag_variable
),然后按列应用函数并在其自身之后进行清理。代码臃肿是因为我有时只需要在滞后观察上使用函数,有时在前向观察上使用函数,有时在两者上都使用函数,这称为窗口。
有什么建议可以更好地实现吗?我的代码似乎太大了。
最佳答案
我不确定你的函数的其余部分,但你可以相当有效地得到你的滞后总和,如下所示:
a[ , lagSum :=
a[, list(sum=sum(value)), by=list(grp=(Date+lag-i) %/% lag)] [grp!=0, sum]
, by=list(i=Date %% lag)]
例如:
set.seed(1)
a[ , lagSum :=
a[, list(sum=sum(value)), by=list(grp=(Date+lag-i) %/% lag)] [grp!=0, sum]
, by=list(i=Date %% lag)]
> a
Date value lagSum
1: 1 -0.6264538 1.32202781
2: 2 0.1836433 3.46026279
3: 3 -0.8356286 3.66646270
4: 4 1.5952808 3.88085074
5: 5 0.3295078 0.07087005
---
996: 996 -0.3132929 -3.79332038
997: 997 -0.8806707 -3.48002750
998: 998 -0.4192869 -2.59935677
999: 999 -1.4827517 -2.18006988
1000: 1000 -0.6973182 -1.88854602
确认正确的值:
# first n values
n <- 5
for (i in seq(n))
a[seq(i, length.out=10), print(sum(value))]
# [1] 1.322028
# [1] 3.460263
# [1] 3.666463
# [1] 3.880851
# [1] 0.07087005
set.seed(1)
a <- data.table(Date = 1:1000, value = rnorm(1000))
system.time({ a[ , lagSum :=
a[, list(sum=sum(value)), by=list(grp=(Date+lag-i) %/% lag)] [grp!=0, sum]
, by=list(i=Date %% lag)]
})
# user system elapsed
# 0.049 0.001 0.056
set.seed(1)
a <- data.table(Date = 1:1000, value = rnorm(1000))
system.time({ for (i in seq(nrow(a)-lag+1))
a[seq(i, length.out=10), lagSum := sum(value)]})
# user system elapsed
# 1.526 0.019 2.220
关于r - 性能提升,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/15691216/
在这段令人惊叹的视频 ( https://www.youtube.com/watch?v=udix3GZouik ) 中,Alex Blom 谈到了 Ember 在移动世界中的“黑客攻击”。 在 22
我们希望通过我们的应用收集使用情况统计信息。因此,我们希望在服务器端的某个地方跟踪用户操作。 就性能而言,哪个选项更合适: 在 App Engine 请求日志中跟踪用户操作。即为每个用户操作写入一个日
在针对对象集合的 LINQ 查询的幕后究竟发生了什么?它只是语法糖还是发生了其他事情使其更有效的查询? 最佳答案 您是指查询表达式,还是查询在幕后的作用? 查询表达式首先扩展为“普通”C#。例如: v
我正在构建一个简单的照片库应用程序,它在列表框中显示图像。 xaml 是:
对于基于 Web 的企业应用程序,使用“静态 Hashmap 存储对象” 和 apache java 缓存系统有何优缺点?哪一个最有利于性能并减少堆内存问题 例如: Map store=Applica
我想知道在性能方面存储类变量的最佳方式是什么。我的意思是,由于 Children() 函数,存储一个 div id 比查找所有其他类名更好。还是把类名写在变量里比较好? 例如这样: var $inne
我已经阅读了所有这些关于 cassandra 有多快的文章,例如单行读取可能需要大约 5 毫秒。 到目前为止,我不太关心我的网站速度,但是随着网站变得越来越大,一些页面开始需要相当多的查询,例如一个页
最近,我在缓存到内存缓存之前的查询一直需要很长时间才能处理!在这个例子中,它花费了 10 秒。在这种情况下,我要做的就是获得 10 个最近的点击。 我感觉它加载了所有 125,592 行然后只返回 1
我找了几篇文章(包括SA中的一些问题),试图找到基本操作的成本。 但是,我尝试制作自己的小程序,以便自己进行测试。在尝试测试加法和减法时,我遇到了一些问题,我用简单的代码向您展示了这一点
这个问题在这里已经有了答案: Will Java app slow down by presence of -Xdebug or only when stepping through code? (
我记得很久以前读过 with() 对 JavaScript 有一些严重的性能影响,因为它可能对范围堆栈进行非确定性更改。我很难找到最近对此的讨论。这仍然是真的吗? 最佳答案 与其说 with 对性能有
我们有一个数据仓库,其中包含非规范化表,行数从 50 万行到 6 多万行不等。我正在开发一个报告解决方案,因此出于性能原因我们正在使用数据库分页。我们的报告有搜索条件,并且我们已经创建了必要的索引,但
我有一条有效的 SQL 语句,但需要很长时间才能处理 我有一个 a_log 表和一个 people 表。我需要在 people 表中找到给定人员的每个 ID 的最后一个事件和关联的用户。 SELECT
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
通常当我建立一个站点时,我将所有的 CSS 放在一个文件中,并且一次性定义与一组元素相关的所有属性。像这样: #myElement { color: #fff; background-
两者之间是否存在任何性能差异: p { margin:0px; padding:0px; } 并省略最后的分号: p { margin:0px; padding:0px } 提前致谢!
我的应用程序 (PHP) 需要执行大量高精度数学运算(甚至可能出现一共100个数字) 通过这个论坛的最后几篇帖子,我发现我必须使用任何高精度库,如 BC Math 或 GMP,因为 float 类型不
我一直在使用 javamail 从 IMAP 服务器(目前是 GMail)检索邮件。 Javamail 非常快速地从服务器检索特定文件夹中的消息列表(仅 id),但是当我实际获取消息(仅包含甚至不包含
我非常渴望开发我的第一个 Ruby 应用程序,因为我的公司终于在内部批准了它的使用。 在我读到的关于 Ruby v1.8 之前的所有内容中,从来没有任何关于性能的正面评价,但我没有发现关于 1.9 版
我是 Redis 的新手,我有一个包含数百万个成员(member) ID、电子邮件和用户名的数据集,并且正在考虑将它们存储在例如列表结构中。我认为 list 和 sorted set 可能最适合我的情
我是一名优秀的程序员,十分优秀!