- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
输入Json文件
{
"CarBrands": [{
"carid": "100bw",
"filter_condition": " (YEAR == \"2009\" AND FACTS BETWEEN 0001 AND 200 AND STORE==\"UK"\" AND RESALE in (\"2015\")) ",
},
{
"carid": "25xw",
"filter_condition": " (YEAR == \"2010\" AND FACTS NOT IN (234,435,456) AND FACTS between 220 AND 500 AND RESALE in (\"2017\")) ",
},
{
"carid": "masy",
"filter_condition": " (YEAR == \"2010\" AND STORE==\"USA"\" AND (FACTS BETWEEN 600 AND 700 OR FACTS BETWEEN 810 AND 920) AND RESALE in (\"2018\")) ",
},
{
"carid": "mxw",
"filter_condition": " (YEAR == \"2013\" AND FACTS ==\"1541\" AND RESALE in (\"2019\")) ",
}
]
}
Select * from Car_transactions where car_facts = (FACTS BETWEEN 0001 AND 200 ) OR (FACTS NOT IN (234,435,456) AND FACTS between 220 AND 500)
OR (FACTS BETWEEN 600 AND 700 OR FACTS BETWEEN 810 AND 920) OR FACTS =541
import sparkSession.implicits._
val tagsDF = sparkSession.read.option("multiLine", true).option("inferSchema", true).json("src/main/resources/carbrands.json");
val df = tagsDF.select(($"CarBrands") as "car_brands")
最佳答案
package sample
import java.util
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical.Filter
import org.apache.spark.sql.functions._
import org.apache.spark.sql.{Column, DataFrame, Row}
object splitObj {
def main(args: Array[String]) = {
implicit val sparkSession = SparkSession.builder().master("local").getOrCreate()
import sparkSession.implicits._
val tagsDF = sparkSession.read.option("multiLine", true).option("inferSchema", true).json("src/main/resources/sample.json")
val df = tagsDF.select(explode($"CarBrands") as "car_brands").select($"car_brands.*")
df.show(false)
/* +-----+-----------------------------------------------------------------------------------------------------------------------+
|carid|filter_condition |
+-----+-----------------------------------------------------------------------------------------------------------------------+
|100bw| (YEAR == "2009" AND FACTS BETWEEN 0001 AND 200 AND STORE=="UK" AND RESALE in ("2015")) |
|25xw | (YEAR == "2010" AND FACTS NOT IN (234,435,456) AND FACTS between 220 AND 500 AND RESALE in ("2017")) |
|masy | (YEAR == "2010" AND STORE=="USA" AND (FACTS BETWEEN 600 AND 700 OR FACTS BETWEEN 810 AND 920) AND RESALE in ("2018")) |
|mxw | (YEAR != "2013" AND FACTS =="1541" AND RESALE in ("2019")) |
+-----+-----------------------------------------------------------------------------------------------------------------------+*/
val df_where = pasrseWhereClause(df).toDF("carid","where_condition")
val f = df.join(df_where,Seq("carid"),"inner").select($"carid",explode($"where_condition").as("condn"))
f.show(false)
/*+-----+----------------------------------------------------------------------------+
|carid|condn |
+-----+----------------------------------------------------------------------------+
|100bw|(YEAR == 2009) |
|100bw|((FACTS >= 1) AND (FACTS <= 200)) |
|100bw|(STORE == UK) |
|100bw|RESALE IN (2015) |
|25xw |(YEAR == 2010) |
|25xw |FACTS NOT IN (234,435,456) |
|25xw |((FACTS >= 220) AND (FACTS <= 500)) |
|25xw |RESALE IN (2017) |
|masy |(YEAR == 2010) |
|masy |(STORE == USA) |
|masy |(((FACTS >= 600) AND (FACTS <= 700)) OR ((FACTS >= 810) AND (FACTS <= 920)))|
|masy |RESALE IN (2018) |
|mxw |(YEAR != 2013) |
|mxw |(FACTS == 1541) |
|mxw |RESALE IN (2019) |
+-----+----------------------------------------------------------------------------+*/
val col_list = Seq("resale","facts")
val fil_col_df = col_list.map({c =>
f.filter(upper($"condn").contains(c.toUpperCase))
})
fil_col_df.reduce(_.union(_)).show(false)
/*
+-----+----------------------------------------------------------------------------+
|carid|condn |
+-----+----------------------------------------------------------------------------+
|100bw|RESALE IN (2015) |
|25xw |RESALE IN (2017) |
|masy |RESALE IN (2018) |
|mxw |RESALE IN (2019) |
|100bw|((FACTS >= 1) AND (FACTS <= 200)) |
|25xw | FACTS NOT IN (234,435,456) |
|25xw |((FACTS >= 220) AND (FACTS <= 500)) |
|masy |(((FACTS >= 600) AND (FACTS <= 700)) OR ((FACTS >= 810) AND (FACTS <= 920)))|
|mxw |(FACTS == 1541) |
+-----+----------------------------------------------------------------------------+
*/
}
def pasrseWhereClause(df:DataFrame)(implicit sparkSession: SparkSession): Seq[(String, Seq[String])] = {
val parseWhere = df.collect().map({ tblrow =>
val id = tblrow.getAs[String]("carid")
val query = tblrow.getAs[String]("filter_condition")
val q = sparkSession.sessionState.sqlParser.parsePlan("select * from tbl where "+query.replace("\"","'"))
val w = q.children.collect{case f:Filter =>
val filter_condns = f.condition.productIterator.flatMap{
case And(l,r) => Seq(l.simpleString.replace("'",""),r.simpleString.replace("'",""))
case o:Predicate => Seq(o.simpleString.replace("'",""))
}
filter_condns.map(filter_condn => {
val not_condn = filter_condn.contains("NOT") match {
case true => filter_condn.replace ("NOT", "").replace ("IN", "NOT IN").replace ("=", "!=")
case false => filter_condn
}
not_condn.replace("=", "==")
.replace("&&", "AND")
.replace("||", "OR").replace("<==", "<=").replace(">==", ">=")
})
}.toList.flatten
(id,w)
})
parseWhere
}
}
package sample
import java.util
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical.Filter
import org.apache.spark.sql.functions._
import org.apache.spark.sql.{Column, DataFrame, Row}
import org.apache.spark.sql.types._
object splitObj {
def main(args: Array[String]) = {
implicit val sparkSession = SparkSession.builder().master("local").getOrCreate()
import sparkSession.implicits._
val tagsDF = sparkSession.read.option("multiLine", true).option("inferSchema", true).json("src/main/resources/sample.json")
val df = tagsDF.select(explode($"CarBrands") as "car_brands").select($"car_brands.*")
df.show(false)
/* +-------+-----------------------------------------------------------------------------------------------------------------------+
|carid |filter_condition |
+-------+-----------------------------------------------------------------------------------------------------------------------+
|100bw | (YEAR == "2009" AND FACTS BETWEEN 0001 AND 200 AND STORE=="UK" AND RESALE in ("2015")) |
|mxw | (YEAR != "2013" AND (FACTS =="1541" AND STORE=="US" AND FACTS !="200" AND YEAR == "2014") AND RESALE in ("2019")) |
|100bxxw| (YEAR == "2009" OR STORE=="UK" OR RESALE in ("2015")) |
|25xw | (YEAR == "2010" AND FACTS NOT IN (234,435,456) AND FACTS between 220 AND 500 AND RESALE in ("2017")) |
|masy | (YEAR == "2010" AND STORE=="USA" AND (FACTS BETWEEN 600 AND 700 OR FACTS BETWEEN 810 AND 920) AND RESALE in ("2018")) |
|mxw | (YEAR != "2013" AND (FACTS =="1541" AND STORE=="US" AND FACTS !="200" AND YEAR == "2014") AND RESALE in ("2019")) |
+-------+-----------------------------------------------------------------------------------------------------------------------+*/
val df_where = pasrseWhereClause(df).toDF("carid","where_condition")
val f = df.join(df_where,Seq("carid"),"inner").select($"carid",explode($"where_condition").as("condn"))
f.show(200,false)
/*+-------+---------------------------+
|carid |condn |
+-------+---------------------------+
|100bw |'YEAR='2009' |
|100bw |'FACTS between 1 and 200 |
|100bw |'STORE='UK' |
|100bw |'RESALE IN (2015) |
|mxw |NOT ('YEAR = 2013) |
|mxw |'FACTS='1541' |
|mxw |'STORE='US' |
|mxw |NOT ('FACTS = 200) |
|mxw |'YEAR='2014' |
|mxw |'RESALE IN (2019) |
|mxw |NOT ('YEAR = 2013) |
|mxw |'FACTS='1541' |
|mxw |'STORE='US' |
|mxw |NOT ('FACTS = 200) |
|mxw |'YEAR='2014' |
|mxw |'RESALE IN (2019) |
|100bxxw|'YEAR='2009' |
|100bxxw|'STORE='UK' |
|100bxxw|'RESALE IN (2015) |
|25xw |'YEAR='2010' |
|25xw |NOT 'FACTS IN (234,435,456)|
|25xw |'FACTS between 220 and 500 |
|25xw |'RESALE IN (2017) |
|masy |'YEAR='2010' |
|masy |'STORE='USA' |
|masy |'FACTS between 600 and 700 |
|masy |'FACTS between 810 and 920 |
|masy |'RESALE IN (2018) |
|mxw |NOT ('YEAR = 2013) |
|mxw |'FACTS='1541' |
|mxw |'STORE='US' |
|mxw |NOT ('FACTS = 200) |
|mxw |'YEAR='2014' |
|mxw |'RESALE IN (2019) |
|mxw |NOT ('YEAR = 2013) |
|mxw |'FACTS='1541' |
|mxw |'STORE='US' |
|mxw |NOT ('FACTS = 200) |
|mxw |'YEAR='2014' |
|mxw |'RESALE IN (2019) |
+-------+---------------------------+
*/
val col_list = Seq("resale","facts")
val fil_col_df = col_list.map({c =>
f.filter(upper($"condn").contains(c.toUpperCase))
})
fil_col_df.reduce(_.union(_)).show(200,false)
/*
+-------+---------------------------+
|carid |condn |
+-------+---------------------------+
|100bw |'RESALE IN (2015) |
|mxw |'RESALE IN (2019) |
|mxw |'RESALE IN (2019) |
|100bxxw|'RESALE IN (2015) |
|25xw |'RESALE IN (2017) |
|masy |'RESALE IN (2018) |
|mxw |'RESALE IN (2019) |
|mxw |'RESALE IN (2019) |
|100bw |'FACTS between 1 and 200 |
|mxw |'FACTS='1541' |
|mxw |NOT ('FACTS = 200) |
|mxw |'FACTS='1541' |
|mxw |NOT ('FACTS = 200) |
|25xw |NOT 'FACTS IN (234,435,456)|
|25xw |'FACTS between 220 and 500 |
|masy |'FACTS between 600 and 700 |
|masy |'FACTS between 810 and 920 |
|mxw |'FACTS='1541' |
|mxw |NOT ('FACTS = 200) |
|mxw |'FACTS='1541' |
|mxw |NOT ('FACTS = 200) |
+-------+---------------------------+
*/
}
def parseExpressions(expression: Expression): Seq[String] = {
expression match{
case And(l,r) => (l,r) match {
case (gte: GreaterThanOrEqual,lte: LessThanOrEqual) => Seq(s"""${gte.left.toString} between ${gte.right.toString} and ${lte.right.toString}""")
case (_,_) => Seq(l,r).flatMap(parseExpressions)
}
case Or(l,r) => Seq(l,r).flatMap(parseExpressions)
case EqualTo(l,r) =>
val prettyLeft = if(l.resolved && l.dataType == StringType) s"'${l.toString}'" else l.toString
val prettyRight = if(r.resolved && r.dataType == StringType) s"'${r.toString}'" else r.toString
Seq(s"$prettyLeft=$prettyRight")
case inn: IsNotNull => Seq(s"${inn.child.toString} is not null")
case p: Predicate => Seq(p.toString)
}
}
def pasrseWhereClause(df:DataFrame)(implicit sparkSession: SparkSession): Seq[(String, Seq[String])] = {
var xx=Seq(Set.empty[String],Set.empty[String])
val parseWhere = df.collect().map({ tblrow =>
val id = tblrow.getAs[String]("carid")
val query = tblrow.getAs[String]("filter_condition")
val q = sparkSession.sessionState.sqlParser.parsePlan("select * from tbl where "+query.replace("\"","'"))
var lt = ""
var rt =""
val w: Seq[Expression] = q.children.collect{case f:Filter =>
f.condition.productIterator.flatMap{
case o:Predicate => Seq(o)
}
//xx.toList.flatten
}.toList.flatten
val output = w.flatMap{parseExpressions}
(id,output)
})
parseWhere
}
}
关于scala - 分割并获取属性,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59571989/
我有一些 Scala 代码,它用两个不同版本的类型参数化函数做了一些漂亮的事情。我已经从我的应用程序中简化了很多,但最后我的代码充满了形式 w(f[Int],f[Double]) 的调用。哪里w()是
如果我在同一目录中有两个单独的未编译的 scala 文件: // hello.scala object hello { def world() = println("hello world") }
val schema = df.schema val x = df.flatMap(r => (0 until schema.length).map { idx => ((idx, r.g
环境: Play 2.3.0/Scala 2.11.1/IntelliJ 13.1 我使用 Typesafe Activator 1.2.1 用 Scala 2.11.1 创建一个新项目。项目创建好后
我只是想知道如何使用我自己的类扩展 Scala 控制台和“脚本”运行程序,以便我可以通过使用实际的 Scala 语言与其通信来实际使用我的代码?我应将 jar 放在哪里,以便无需临时配置即可从每个 S
我已经根据 README.md 文件安装了 ensime,但是,我在低级 ensime-server 缓冲区中出现以下错误: 信息: fatal error :scala.tools.nsc.Miss
我正在阅读《Scala 编程》一书。在书中,它说“一个函数文字被编译成一个类,当在运行时实例化时它是一个函数值”。并且它提到“函数值是对象,因此您可以根据需要将它们存储在变量中”。 所以我尝试检查函数
我有 hello world scala native 应用程序,想对此应用程序运行小型 scala 测试我使用通常的测试命令,但它抛出异常: NativeMain.scala object Nati
有few resources在网络上,在编写与代码模式匹配的 Scala 编译器插件方面很有指导意义,但这些对生成代码(构建符号树)没有帮助。我应该从哪里开始弄清楚如何做到这一点? (如果有比手动构建
我是 Scala 的新手。但是,我用 创建了一个中等大小的程序。斯卡拉 2.9.0 .现在我想使用一个仅适用于 的开源库斯卡拉 2.7.7 . 是吗可能 在我的 Scala 2.9.0 程序中使用这个
有没有办法在 Scala 2.11 中使用 scala-pickling? 我在 sonatype 存储库中尝试了唯一的 scala-pickling_2.11 工件,但它似乎不起作用。我收到消息:
这与命令行编译器选项无关。如何以编程方式获取代码内的 Scala 版本? 或者,Eclipse Scala 插件 v2 在哪里存储 scalac 的路径? 最佳答案 这无需访问 scala-compi
我正在阅读《Scala 编程》一书,并在第 6 章中的类 Rational 实现中遇到了一些问题。 这是我的 Rational 类的初始版本(基于本书) class Rational(numerato
我是 Scala 新手,我正在尝试开发一个使用自定义库的小项目。我在库内创建了一个mysql连接池。这是我的库的build.sbt organization := "com.learn" name :
我正在尝试运行一些 Scala 代码,只是暂时打印出“Hello”,但我希望在 SBT 项目中编译 Scala 代码之前运行 Scala 代码。我发现在 build.sbt 中有以下工作。 compi
Here链接到 maven Scala 插件使用。但没有提到它使用的究竟是什么 Scala 版本。我创建了具有以下配置的 Maven Scala 项目: org.scala-tools
我对 Scala 还很陌生,请多多包涵。我有一堆包裹在一个大数组中的 future 。 future 已经完成了查看几 TB 数据的辛勤工作,在我的应用程序结束时,我想总结上述 future 的所有结
我有一个 scala 宏,它依赖于通过包含其位置的静态字符串指定的任意 xml 文件。 def myMacro(path: String) = macro myMacroImpl def myMacr
这是我的功能: def sumOfSquaresOfOdd(in: Seq[Int]): Int = { in.filter(_%2==1).map(_*_).reduce(_+_) } 为什么我
这个问题在这里已经有了答案: Calculating the difference between two Java date instances (45 个答案) 关闭 5 年前。 所以我有一个这
我是一名优秀的程序员,十分优秀!