- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我已经下载了k-means(在hadoop mapreduce中)开源。但是,它具有编译错误。
- - - - - - - - - - -资源 - - - - - - - - - - - - - -
/*
* Copyright 2012
* Parallel and Distributed Systems Group (PVS)
* Institute of Computer Science (IFI)
* Heidelberg University
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package examples;
import algorithms.kmeans.Cluster;
import algorithms.kmeans.Clusters;
import algorithms.kmeans.SamplesCache;
import org.apache.*;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.mahout.math.DenseVector;
import org.apache.mahout.math.DenseVectorWritable;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
public class KMeansHadoop {
private final static Logger LOG = LoggerFactory.getLogger(KMeansHadoop.class);
public static class KMeansMapper extends
MRMapper<LongWritable, Text, IntWritable, Clusters, Clusters> {
private SamplesCache cache = new SamplesCache(500);
private int cacheSize = 10000;
private Clusters clusters = null;
private int k = 0;
private int nextCentroidToInit = 0;
/**
* Configures the mapper by reading two configuration options:
* - "numClusters": the k in k-Means
* - "numAuxClusters": the number of in-memory auxiliary clusters representing the input data
*
* @param context the mapper context, used to access the configuration
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void setup(Context context) throws IOException, InterruptedException {
super.setup(context);
Configuration conf = context.getConfiguration();
this.k = conf.getInt("numCluster", 5);
this.clusters = new Clusters(k);
this.cacheSize = conf.getInt("numAuxCluster", 500);
this.cache = new SamplesCache(cacheSize);
}
/**
* Maps the input lines to initial centroids and, as a side-effect, stores auxiliary clusters representing the
* input data in memory
*
* @param key the key provided by the input format, not used here
* @param value one line of the input; input format: one data point per line, vector components delimited by spaces
* @param context the mapper context used to send initial centroids to the reducer
* @throws IOException
* @throws InterruptedException
*/
@Override
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// Input format: one data point per line, components delimited by spaces
final List<Double> doubleValues = new ArrayList<Double>();
final StringTokenizer tk = new StringTokenizer(value.toString());
while(tk.hasMoreElements()) {
final String token = tk.nextToken();
doubleValues.add(Double.parseDouble(token));
}
double[] dv = new double[doubleValues.size()];
for(int i=0; i<doubleValues.size(); i++) {
dv[i] = doubleValues.get(i);
}
DenseVector dvec = new DenseVector(dv);
DenseVectorWritable sample = new DenseVectorWritable(dvec);
// add sample to local auxiliary clusters
this.cache.addSample(sample);
// first k points are chosen as initial centroids
if (nextCentroidToInit < k) {
this.clusters.set(nextCentroidToInit, new Cluster(sample, sample));
this.nextCentroidToInit += 1;
} else if (nextCentroidToInit == k) {
// send initial centroids to reducer
context.write(new IntWritable(0), this.clusters);
this.nextCentroidToInit += 1;
}
}
/**
* Remaps the input data when a new set of preliminary clusters is received from the reducer by recalculating
* the assignment of the local input data, as represented by the auxiliary clusters, to the preliminary clusters
* and sends the updated centroids to the reducer.
* @param cs the preliminary clusters computed by the reducer
* @param context the mapper context used to send the locally recomputed centroids to the reducer
* @throws IOException
* @throws InterruptedException
*/
public void remap(List<Clusters> cs, Context context) throws IOException, InterruptedException {
LOG.info("Remapping preliminary clusters");
// set the preliminary clusters as new clusters
this.clusters = cs.get(0).clone();
this.clusters.reset();
// reassign the local input data, represented by the auxiliary clusters, to the clusters, thereby readjusting
// the clusters centroids
this.cache.reAssignAll(clusters);
// send the locally updated clusters to the reducer
context.write(new IntWritable(0), this.clusters);
}
}
public static class KMeansReducer extends
MRReducer<IntWritable, Clusters, IntWritable, Clusters, Clusters> {
private double lastError = Double.MAX_VALUE;
private float epsilon = Float.MAX_VALUE;
/**
* Configures the mapper by reading the configuration option "epsilon": The minimum change of the MSE needed to
* trigger a new iteration.
*
* @param context the reducer context, used to access the configuration
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void setup(Context context) throws IOException, InterruptedException {
Configuration conf = context.getConfiguration();
epsilon = conf.getFloat("epsilon", 100f);
}
/**
* Reduces a list of clusters locally computed by the mappers into a preliminary global set of clusters, which
* is then restreamed to the mappers, or, iff the MSE of the global set of clusters has not changed by more than
* epsilon since the last reduce invocation ends the iteration by emiting the final set of clusters.
*
* @param key the key set by the mapper, not used here
* @param values the list of locally computed clusters computed by the mappers
* @param context the reducer context, used to restream preliminary clusters to the mappers and emit the final
* clusters
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void reduce(IntWritable key, Iterable<Clusters> values,
MRReduceContext<IntWritable, Clusters, IntWritable, Clusters, Clusters> context) throws IOException, InterruptedException {
// Merge the list of clusters into one set of clusters
Clusters results = null;
for(Clusters clusters : values) {
if( results == null ) {
results = clusters;
} else {
results.merge(clusters);
}
}
Double error = results.getMSE();
LOG.info("Last error " + lastError + ", current error " + error);
if (lastError < Double.MAX_VALUE &&
error <= lastError + epsilon &&
error >= lastError - epsilon) {
// MSE has changed by less than epsilon: Emit final result
context.write(new IntWritable(0), results);
LOG.info("Final result written.");
} else {
// MSE has changed by more than epsilon: Send recomputed preliminary clusters to mappers to start a new
// iteration
this.lastError = error;
results.computeNewCentroids();
context.restream(results);
LOG.info("Preliminary result restreamed.");
}
}
}
/**
* Executes the streaming Hadoop MapReduce program
* @param args first arg is input path, second arg is output path
* @throws Exception
*/
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
conf.setBoolean("mrstreamer.hadoop.streaming", true);
// has to be 1 to ensure the algorithm producing valid results
conf.setInt(JobContext.NUM_REDUCES, 1);
conf.setInt(JobContext.NUM_MAPS, 4);
conf.set("numCluster", "5");
conf.set("numAuxCluster", "500");
Job job = new MRSJob(conf, "kmeanshadoop");
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(Clusters.class);
job.setMapperClass(KMeansMapper.class);
job.setReducerClass(KMeansReducer.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
Exception in thread "main" java.lang.Error: Unresolved compilation problems:
NUM_REDUCES cannot be resolved or is not a field
NUM_MAPS cannot be resolved or is not a field
最佳答案
可能您没有使用与该代码的作者相同的Hadoop版本。它应该由以下行覆盖:import org.apache.hadoop.mapred.JobContext;
如果要使用这些设置,请更新到hadoop版本2.2.0(或更高版本)。
否则,您可以在旧API上使用以下命令来代替这两个命令:
conf.setNumReduceTasks(1);
conf.setNumMapTasks(4); //but this is only a suggestion to hadoop
关于hadoop - hadoop的K均值编译错误…,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/22748106/
我们有数据(此时未分配)要转换/聚合/透视到 wazoo。 我在 www 上看了看,我问的所有答案都指向 hadoop 可扩展、运行便宜(没有 SQL 服务器机器和许可证)、快速(如果你有足够的数据)
这很明显,我们都同意我们可以将 HDFS + YARN + MapReduce 称为 Hadoop。但是,Hadoop 生态系统中的其他不同组合和其他产品会怎样? 例如,HDFS + YARN + S
如果 es-hadoop 只是连接到 HDFS 的 Hadoop 连接器,它如何支持 Hadoop 分析? 最佳答案 我假设您指的是 this project .在这种情况下,ES Hadoop 项目
看完this和 this论文,我决定我想在 MapReduce 上为大型数据集实现分布式体积渲染设置作为我的本科论文工作。 Hadoop 是一个合理的选择吗? Java 不会扼杀一些性能提升或使与 C
我一直在尝试查找有关如何通过命令行提交 hadoop 作业的信息。 我知道命令 - hadoop jar jar-file 主类输入输出 还有另一个命令,我正在尝试查找有关它的信息,但未能找到 - h
Hadoop 服务器在 Kubernetes 中。而Hadoop客户端位于外网。所以我尝试使用 kubernetes-service 来使用 Hadoop 服务器。但是 hadoop fs -put
有没有人遇到奇怪的环境问题,在调用 hadoop 命令时被迫使用 SU 而不是 SUDO? sudo su -c 'hadoop fs -ls /' hdfs Found 4 itemsdrwxr-x
在更改 mapred-site.xml 中的属性后,我给出了一个 tar.bz2 文件、.gz 和 tar.gz 文件作为输入。以上似乎都没有奏效。我假设这里发生的是 hadoop 作为输入读取的记录
如何在 Hadoop Pipes 中获取正在 hadoop 映射器 中执行的输入文件 名称? 我可以很容易地在基于 java 的 map reducer 中获取文件名,比如 FileSplit fil
我想使用 MapReduce 方法分析连续的数据流(通过 HTTP 访问),因此我一直在研究 Apache Hadoop。不幸的是,Hadoop 似乎期望以固定大小的输入文件开始作业,而不是能够在新数
名称节点可以执行任务吗?默认情况下,任务在集群的数据节点上执行。 最佳答案 假设您正在询问MapReduce ... 使用YARN,MapReduce任务在应用程序主数据库中执行,而不是在nameno
我有一个关系A包含 (zip-code). 我还有另一个关系B包含 (name:gender:zip-code) (x:m:1234) (y:f:1234) (z:m:1245) (s:f:1235)
我是hadoop地区的新手。您能帮我负责(k2,list[v2,v2,v2...])形式的输出(意味着将键及其所有关联值组合在一起)的责任是吗? 谢谢。 最佳答案 这是Hadoop的MapReduce
因此,我一直在尝试编写一个hadoop程序,该程序将输入作为一个包含许多文件的文件,并且我希望hadoop程序的输出仅是输入文件的一行。但是我还没有做到这一点。我也不想去 reducer 课。如果有人
我使用的输入文本文件的内容是 1 "Come 1 "Defects," 1 "I 1 "Information 1 "J" 2 "Plain 5 "Project 1
谁能告诉我以下grep命令的作用: $ bin/hadoop jar hadoop-*-examples.jar grep input output 'dfs[a-z.]+' 最佳答案 http:/
我不了解mapreducer的基本功能,mapreducer是否有助于将文件放入HDFS 或mapreducer仅有助于分析HDFS中现有文件中的内容 我对hadoop非常陌生,任何人都可以指导我理解
CopyFromLocal将从本地文件系统上载数据。 不要放会从任何文件上传数据,例如。本地FS,亚马逊S3 或仅来自本地fs ??? 最佳答案 请找到两个命令的用法。 put ======= Usa
我开始研究hadoop mapreduce。 我是Java和hadoop的初学者,并且了解hadoop mapreduce的编码,但是有兴趣了解它在云中的内部工作方式。 您能否分享一些很好的链接来说明
我一直在寻找Hadoop mapreduce类的类路径。我正在使用Hortonworks 2.2.4版沙箱。我需要这样的类路径来运行我的javac编译器: javac -cp (CLASS_PATH)
我是一名优秀的程序员,十分优秀!