- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想使用 function
关键字定义来证明函数定义的正确性。以下是自然数的通常归纳定义上的加法函数的定义:
theory FunctionDefinition
imports Main
begin
datatype natural = Zero | Succ natural
function add :: "natural => natural => natural"
where
"add Zero m = m"
| "add (Succ n) m = Succ (add n m)"
Isabelle/JEdit 向我展示了以下子目标:
goal (4 subgoals):
1. ⋀P x. (⋀m. x = (Zero, m) ⟹ P) ⟹ (⋀n m. x = (Succ n, m) ⟹ P) ⟹ P
2. ⋀m ma. (Zero, m) = (Zero, ma) ⟹ m = ma
3. ⋀m n ma. (Zero, m) = (Succ n, ma) ⟹ m = Succ (add_sumC (n, ma))
4. ⋀n m na ma. (Succ n, m) = (Succ na, ma) ⟹ Succ (add_sumC (n, m)) = Succ (add_sumC (na, ma))
Auto solve_direct: ⋀m ma. (Zero, m) = (Zero, ma) ⟹ m = ma can be solved directly with
Product_Type.Pair_inject: (?a, ?b) = (?a', ?b') ⟹ (?a = ?a' ⟹ ?b = ?b' ⟹ ?R) ⟹ ?R
使用
apply (auto simp add: Product_Type.Pair_inject)
我明白了
goal (1 subgoal):
1. ⋀P a b. (⋀m. a = Zero ∧ b = m ⟹ P) ⟹ (⋀n m. a = Succ n ∧ b = m ⟹ P) ⟹ P
尚不清楚如何继续。到底,这是解决这个问题的正确方法吗?
我知道如果我使用有趣
定义,Isabelle 会自动执行此操作 - 我想学习如何手动执行此操作。
最佳答案
tutorial on the function
package第 3 节中提到 fun f where ...
缩写
function (sequential) f where ...
by pat_completeness auto
termination by lexicographic_order
这里pat_completeness
是function
包中的一个证明方法,它可以自动证明数据类型构造函数模式的完整性。这是您必须证明的第一个子目标。建议在 auto
之前应用 pat_completeness
,因为 auto
会更改目标的语法结构,而 pat_completeness
可能不会自动后工作。
如果您想在没有 pat_completeness
的情况下证明模式完整性,您应该尝试对所有函数参数进行案例分析,即示例中的 case_tac a
。
关于function - 证明 Isabelle 中函数定义的正确性,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21383222/
我需要在一篇论文中做一个演示,该论文在某些时候使用了 Isabelle/Isar 和 Isabelle/HOL。 我尝试在线研究 Isabelle/HOL 和 Isabelle/Isar,以便能够在一
我想在一个名为 List 的理论中定义我自己的列表类型,但已经有一个同名的理论。 有没有比Main更轻量级的理论? ? 最佳答案 请注意 $ISABELLE_HOME/src/HOL/ex/Seq.t
Isabelle 中的“商型模式”是什么? 我在互联网上找不到任何解释。 最佳答案 如果你能从你看到这句话的地方引用一点会更好。我知道“模式匹配”,我知道“商类型”,但我不知道“商类型模式”。 我宁愿
有时我发现很难使用 Isabelle,因为我无法像在正常编程中那样使用“打印命令”。 比如我想看什么?thesis .具体语义书说: The unknown ?thesis is implicitly
我是 isabelle 的新手,并试图证明以下简单的不等式: lemma ineq: "(a::real) > 0 ⟹ a 0 ⟹ b 0" proof have "1/a + 1/b >
输入以下定义时 datatype env = "nat => 'a option" Isabelle/jedit 显示一个感叹号并说 Legacy feature! Bad name binding:
在 Isabelle 中,有时会遇到存在重复子目标的场景。例如,想象以下证明脚本: lemma "a ∧ a" apply (rule conjI) 目标: proof (prove): step
Isabelle/jEdit 中的颜色代码是什么意思?我在 Isabelle/jEdit manual 中找不到他们的描述.它唯一写的是 Prover feedback works via color
如何在 Isabelle 中定义常量集?例如像 {1,2,3}(给它一个更有趣的转折,1,2,3 是实数),或 {x\in N: x < m},其中 m 是某个固定数字 - 或者,也许更难,集合 {N
假设我在 Isabelle 中写了一个引理“(∀a. P a ⟹ Q a) ⟹ R b”。 ∀a只会量化 P a .如果我想量化超过 P a ⟹ Q a但是,在 ∀a 后面加上括号(即“(∀a. (P
使用 Isar 时,我发现了一个令人惊讶的行为(对我而言)。 我尝试使用假设,有时 Isar 提示它无法解决未决目标,例如我最典型的例子是有一个假设但无法假设它: lemma assumes "A
在伊莎贝尔中,人们通常可以达到证明目标,其中中间类型的术语对于证明的正确性至关重要。例如,考虑以下引理,将 nat 42 转换为 'a word,然后再返回: theory Test imports
已关注 how-to-use-persistent-heap-images-to-make-loading-of-theories-faster-in-isabelle另一个建议是我为 Nominal
我尝试使用 partial_function 关键字定义部分函数。它不起作用。这是最能表达直觉的: partial_function (tailrec) oddity :: "nat => nat"
我知道如何在 Isabelle 中制作“术语缩写”,但我可以制作行为相同的“类型缩写”吗? 我可以定义一个“术语缩写”使用 abbreviation "foo == True" 从此以后,输出中出现的
如何在 Isabelle 中将集合转换为列表? 我对带有签名的函数定义感兴趣: "'a set => 'a list" 我该如何定义? 最佳答案 通过搜索 "'a set" "'a list"在我偶然
我想用简化词来替换不等式的子项。我将通过一个示例来说明这一点,而不是对我的问题进行通用定义: 假设我有一个简单的编程语言和一个基于它的 Hoare 逻辑。假设我们有 if、while 和序列操作。此外
我是一名刚开始习惯 Isabelle 的数学家,而本应非常简单的事情却令人沮丧。如何定义两个常量之间的函数?比如说,函数 f: {1,2,3}\to {1,2,4} 映射 1 到 1、2 到 4 和
我想找到定理。我已阅读 find_theorems 上的部分在 Isabelle/Isar reference manual : find_theorems criteria Retrieves fa
我试图在 Isabelle/HOL 中证明这个引理。 引理“(0::nat) ≠ undefined” 但是挑剔的人找到了这个和它的否定的反例 引理“(0::nat) = undefined” 这怎么
我是一名优秀的程序员,十分优秀!