gpt4 book ai didi

r - 使用 R 中的 Ramps 包指定线性混合模型的相关结构

转载 作者:行者123 更新时间:2023-12-02 21:49:54 25 4
gpt4 key购买 nike

我正在尝试创建一个线性混合模型(lmm),它允许点之间的空间相关性(每个点都有纬度/经度)。我希望空间相关性基于点之间的大圆距离。

ramps包含一个计算“半正矢”距离的相关结构——尽管我在实现它时遇到了困难。我之前使用过其他相关结构(corGauscorExp)并且没有遇到任何困难。我假设具有“haversine”度量的 corRGaus 可以以相同的方式实现。

我能够使用 lme 函数成功创建具有根据平面距离计算的空间相关性的 lmm。

我还能够创建一个线性模型(非混合),其空间相关性使用大圆距离计算,尽管使用 gls 命令的相关结构存在错误。

当尝试对具有大圆距离的线性模型使用 gls 命令时,出现以下错误:

x = runif(20, 1,50)
y = runif(20, 1,50)
gls(x ~ y, cor = corRGaus(form = ~ x + y))

Generalized least squares fit by REML
Model: x ~ y
Data: NULL
Log-restricted-likelihood: -78.44925

Coefficients:
(Intercept) y
24.762656602 0.007822469

Correlation Structure: corRGaus
Formula: ~x + y
Parameter estimate(s):
Error in attr(object, "fixed") && unconstrained :
invalid 'x' type in 'x && y'

当我增加数据大小时,会出现内存分配错误(仍然是一个非常小的数据集):

x = runif(100, 1, 50)
y = runif(100, 1, 50)
lat = runif(100, -90, 90)
long = runif(100, -180, 180)
gls(x ~ y, cor = corRGaus(form = ~ x + y))

Error in glsEstimate(glsSt, control = glsEstControl) :
'Calloc' could not allocate memory (18446744073709551616 of 8 bytes)

当尝试使用 lme 命令和 ramps 包中的 corRGaus 运行混合模型时,结果如下:

x = runif(100, 1, 50)
y = runif(100, 1, 50)
LC = c(rep(1, 50) , rep(2, 50))
lat = runif(100, -90, 90)
long = runif(100, -180, 180)

lme(x ~ y,random = ~ y|LC, cor = corRGaus(form = ~ long + lat))

Error in `coef<-.corSpatial`(`*tmp*`, value = value[parMap[, i]]) :
NA/NaN/Inf in foreign function call (arg 1)
In addition: Warning messages:
1: In nlminb(c(coef(lmeSt)), function(lmePars) -logLik(lmeSt, lmePars), :
NA/NaN function evaluation
2: In nlminb(c(coef(lmeSt)), function(lmePars) -logLik(lmeSt, lmePars), :
NA/NaN function evaluation

我不确定如何继续使用此方法。我想用“haversine”函数来完成我的模型,但我在实现它们时遇到了困难。关于 Ramps 包的问题很少,而且我看到的实现也很少。任何帮助将不胜感激。

我之前曾尝试修改 nlme 包,但未能成功。我发布了一个关于 this 的问题,其中建议我使用 ramps 包。

我在 Windows 8 计算机上使用 R 3.0.0。

最佳答案

好的,这里有一个在 gls 中实现各种空间相关结构的选项/nlme与半正矢距离。

各种corSpatial -type 类已经具备了在给定距离度量的情况下从空间协变量构建相关矩阵的机制。不幸的是,dist不实现半正矢距离,并且 distcorSpatial 调用的函数从空间协变量计算距离矩阵。

距离矩阵计算在 getCovariate.corSpatial 中执行。该方法的修改形式会将适当的距离传递给其他方法,并且大多数方法不需要修改。

在这里,我创建了一个新的 corStruct类,corHaversine ,并仅修改getCovariate另一种方法 ( Dim ) 确定使用哪个相关函数。那些不需要修改的方法是从等效的 corSpatial 复制的。方法。 (新)mimic corHaversine 中的参数采用具有感兴趣的相关函数的空间类的名称:默认情况下,它设置为“corSpher ”。

警告:除了确保此代码针对球形和高斯相关函数运行之外,我还没有真正进行大量检查。

#### corHaversine - spatial correlation with haversine distance

# Calculates the geodesic distance between two points specified by radian latitude/longitude using Haversine formula.
# output in km
haversine <- function(x0, x1, y0, y1) {
a <- sin( (y1 - y0)/2 )^2 + cos(y0) * cos(y1) * sin( (x1 - x0)/2 )^2
v <- 2 * asin( min(1, sqrt(a) ) )
6371 * v
}

# function to compute geodesic haversine distance given two-column matrix of longitude/latitude
# input is assumed in form decimal degrees if radians = F
# note fields::rdist.earth is more efficient
haversineDist <- function(xy, radians = F) {
if (ncol(xy) > 2) stop("Input must have two columns (longitude and latitude)")
if (radians == F) xy <- xy * pi/180
hMat <- matrix(NA, ncol = nrow(xy), nrow = nrow(xy))
for (i in 1:nrow(xy) ) {
for (j in i:nrow(xy) ) {
hMat[j,i] <- haversine(xy[i,1], xy[j,1], xy[i,2], xy[j,2])
}
}
as.dist(hMat)
}

## for most methods, machinery from corSpatial will work without modification
Initialize.corHaversine <- nlme:::Initialize.corSpatial
recalc.corHaversine <- nlme:::recalc.corSpatial
Variogram.corHaversine <- nlme:::Variogram.corSpatial
corFactor.corHaversine <- nlme:::corFactor.corSpatial
corMatrix.corHaversine <- nlme:::corMatrix.corSpatial
coef.corHaversine <- nlme:::coef.corSpatial
"coef<-.corHaversine" <- nlme:::"coef<-.corSpatial"

## Constructor for the corHaversine class
corHaversine <- function(value = numeric(0), form = ~ 1, mimic = "corSpher", nugget = FALSE, fixed = FALSE) {
spClass <- "corHaversine"
attr(value, "formula") <- form
attr(value, "nugget") <- nugget
attr(value, "fixed") <- fixed
attr(value, "function") <- mimic
class(value) <- c(spClass, "corStruct")
value
} # end corHaversine class
environment(corHaversine) <- asNamespace("nlme")

Dim.corHaversine <- function(object, groups, ...) {
if (missing(groups)) return(attr(object, "Dim"))
val <- Dim.corStruct(object, groups)
val[["start"]] <- c(0, cumsum(val[["len"]] * (val[["len"]] - 1)/2)[-val[["M"]]])
## will use third component of Dim list for spClass
names(val)[3] <- "spClass"
val[[3]] <- match(attr(object, "function"), c("corSpher", "corExp", "corGaus", "corLin", "corRatio"), 0)
val
}
environment(Dim.corHaversine) <- asNamespace("nlme")


## getCovariate method for corHaversine class
getCovariate.corHaversine <- function(object, form = formula(object), data) {
if (is.null(covar <- attr(object, "covariate"))) { # if object lacks covariate attribute
if (missing(data)) { # if object lacks data
stop("need data to calculate covariate")
}
covForm <- getCovariateFormula(form)
if (length(all.vars(covForm)) > 0) { # if covariate present
if (attr(terms(covForm), "intercept") == 1) { # if formula includes intercept
covForm <- eval(parse(text = paste("~", deparse(covForm[[2]]),"-1",sep=""))) # remove intercept
}
# can only take covariates with correct names
if (length(all.vars(covForm)) > 2) stop("corHaversine can only take two covariates, 'lon' and 'lat'")
if ( !all(all.vars(covForm) %in% c("lon", "lat")) ) stop("covariates must be named 'lon' and 'lat'")
covar <- as.data.frame(unclass(model.matrix(covForm, model.frame(covForm, data, drop.unused.levels = TRUE) ) ) )
covar <- covar[,order(colnames(covar), decreasing = T)] # order as lon ... lat
}
else {
covar <- NULL
}

if (!is.null(getGroupsFormula(form))) { # if groups in formula extract covar by groups
grps <- getGroups(object, data = data)
if (is.null(covar)) {
covar <- lapply(split(grps, grps), function(x) as.vector(dist(1:length(x) ) ) ) # filler?
}
else {
giveDist <- function(el) {
el <- as.matrix(el)
if (nrow(el) > 1) as.vector(haversineDist(el))
else numeric(0)
}
covar <- lapply(split(covar, grps), giveDist )
}
covar <- covar[sapply(covar, length) > 0] # no 1-obs groups
}
else { # if no groups in formula extract distance
if (is.null(covar)) {
covar <- as.vector(dist(1:nrow(data) ) )
}
else {
covar <- as.vector(haversineDist(as.matrix(covar) ) )
}
}
if (any(unlist(covar) == 0)) { # check that no distances are zero
stop("cannot have zero distances in \"corHaversine\"")
}
}
covar
} # end method getCovariate
environment(getCovariate.corHaversine) <- asNamespace("nlme")

要测试其运行情况,给定范围参数 1000:

## test that corHaversine runs with spherical correlation (not testing that it WORKS ...)
library(MASS)
set.seed(1001)
sample_data <- data.frame(lon = -121:-22, lat = -50:49)
ran <- 1000 # 'range' parameter for spherical correlation
dist_matrix <- as.matrix(haversineDist(sample_data)) # haversine distance matrix
# set up correlation matrix of response
corr_matrix <- 1-1.5*(dist_matrix/ran)+0.5*(dist_matrix/ran)^3
corr_matrix[dist_matrix > ran] = 0
diag(corr_matrix) <- 1
# set up covariance matrix of response
sigma <- 2 # residual standard deviation
cov_matrix <- (diag(100)*sigma) %*% corr_matrix %*% (diag(100)*sigma) # correlated response
# generate response
sample_data$y <- mvrnorm(1, mu = rep(0, 100), Sigma = cov_matrix)

# fit model
gls_haversine <- gls(y ~ 1, correlation = corHaversine(form=~lon+lat, mimic="corSpher"), data = sample_data)
summary(gls_haversine)

# Correlation Structure: corHaversine
# Formula: ~lon + lat
# Parameter estimate(s):
# range
# 1426.818
#
# Coefficients:
# Value Std.Error t-value p-value
# (Intercept) 0.9397666 0.7471089 1.257871 0.2114
#
# Standardized residuals:
# Min Q1 Med Q3 Max
# -2.1467696 -0.4140958 0.1376988 0.5484481 1.9240042
#
# Residual standard error: 2.735971
# Degrees of freedom: 100 total; 99 residual

测试它是否以高斯相关运行,范围参数 = 100:

## test that corHaversine runs with Gaussian correlation
ran = 100 # parameter for Gaussian correlation
corr_matrix_gauss <- exp(-(dist_matrix/ran)^2)
diag(corr_matrix_gauss) <- 1
# set up covariance matrix of response
cov_matrix_gauss <- (diag(100)*sigma) %*% corr_matrix_gauss %*% (diag(100)*sigma) # correlated response
# generate response
sample_data$y_gauss <- mvrnorm(1, mu = rep(0, 100), Sigma = cov_matrix_gauss)

# fit model
gls_haversine_gauss <- gls(y_gauss ~ 1, correlation = corHaversine(form=~lon+lat, mimic = "corGaus"), data = sample_data)
summary(gls_haversine_gauss)

lme :

## runs with lme
# set up data with group effects
group_y <- as.vector(sapply(1:5, function(.) mvrnorm(1, mu = rep(0, 100), Sigma = cov_matrix_gauss)))
group_effect <- rep(-2:2, each = 100)
group_y = group_y + group_effect
group_name <- factor(group_effect)
lme_dat <- data.frame(y = group_y, group = group_name, lon = sample_data$lon, lat = sample_data$lat)
# fit model
lme_haversine <- lme(y ~ 1, random = ~ 1|group, correlation = corHaversine(form=~lon+lat, mimic = "corGaus"), data = lme_dat, control=lmeControl(opt = "optim") )
summary(lme_haversine)

# Correlation Structure: corHaversine
# Formula: ~lon + lat | group
# Parameter estimate(s):
# range
# 106.3482
# Fixed effects: y ~ 1
# Value Std.Error DF t-value p-value
# (Intercept) -0.0161861 0.6861328 495 -0.02359033 0.9812
#
# Standardized Within-Group Residuals:
# Min Q1 Med Q3 Max
# -3.0393708 -0.6469423 0.0348155 0.7132133 2.5921573
#
# Number of Observations: 500
# Number of Groups: 5

关于r - 使用 R 中的 Ramps 包指定线性混合模型的相关结构,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18857443/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com