- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我在Ubuntu 14.04上使用Apache Hadoop 2.5.0的单节点群集设置
我使用Flume将推文存储在HDFS中。
然后,我使用以下Hive命令在Hive中创建一个表,该表以表格格式存储所有推文:
CREATE EXTERNAL TABLE tweets (
id BIGINT,
created_at STRING,
source STRING,
favorited BOOLEAN,
retweet_count INT,
retweeted_status STRUCT<
text:STRING,
user:STRUCT<screen_name:STRING,name:STRING>>,
entities STRUCT<
urls:ARRAY<STRUCT<expanded_url:STRING>>,
user_mentions:ARRAY<STRUCT<screen_name:STRING,name:STRING>>,
hashtags:ARRAY<STRUCT<text:STRING>>>,
text STRING,
user STRUCT<
screen_name:STRING,
name:STRING,
friends_count:INT,
followers_count:INT,
statuses_count:INT,
verified:BOOLEAN,
utc_offset:INT,
time_zone:STRING>,
in_reply_to_screen_name STRING
)
ROW FORMAT SERDE 'com.cloudera.hive.serde.JSONSerDe'
LOCATION '/user/flume/tweets';
CREATE TABLE outputtable (
a STRING,
b INT );
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.util.*;
import org.apache.hcatalog.common.*;
import org.apache.hcatalog.mapreduce.*;
import org.apache.hcatalog.data.*;
import org.apache.hcatalog.data.schema.*;
public class UseHCat extends Configured implements Tool {
public static class Map extends Mapper<WritableComparable, HCatRecord, Text, IntWritable> {
String tweetText;
@Override
protected void map( WritableComparable key,
HCatRecord value,
org.apache.hadoop.mapreduce.Mapper<WritableComparable, HCatRecord,
Text, IntWritable>.Context context)
throws IOException, InterruptedException {
tweetText = (String) value.get(7);
int i = 1;
context.write(new Text(tweetText), new IntWritable(i));
}
}
public static class Reduce extends Reducer<Text, IntWritable,
WritableComparable, HCatRecord> {
protected void reduce( Text key,
java.lang.Iterable<IntWritable> values,
org.apache.hadoop.mapreduce.Reducer<Text, IntWritable,
WritableComparable, HCatRecord>.Context context)
throws IOException, InterruptedException {
Iterator<IntWritable> iter = values.iterator();
IntWritable iw = iter.next();
int id = iw.get();
HCatRecord record = new DefaultHCatRecord(2);
record.set(0, key.toString());
record.set(1, id);
context.write(null, record);
}
}
public int run(String[] args) throws Exception {
Configuration conf = getConf();
String inputTableName = "tweets";
String outputTableName = "outputtable";
String dbName = null;
Job job = new Job(conf, "UseHCat");
HCatInputFormat.setInput(job, InputJobInfo.create(dbName, inputTableName, null));
job.setJarByClass(UseHCat.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
// An HCatalog record as input
job.setInputFormatClass(HCatInputFormat.class);
// Mapper emits a string as key and an integer as value
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// Ignore the key for the reducer output; emitting an HCatalog record as value
job.setOutputKeyClass(WritableComparable.class);
job.setOutputValueClass(DefaultHCatRecord.class);
job.setOutputFormatClass(HCatOutputFormat.class);
HCatOutputFormat.setOutput(job, OutputJobInfo.create(dbName, outputTableName, null));
HCatSchema s = HCatOutputFormat.getTableSchema(job);
System.err.println("INFO: output schema explicitly set for writing:" + s);
HCatOutputFormat.setSchema(job, s);
return (job.waitForCompletion(true) ? 0 : 1);
}
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new UseHCat(), args);
System.exit(exitCode);
}
}
hadoop jar MyProject.jar
14/11/16 17:17:29 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/hive/ql/metadata/HiveStorageHandler
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:800)
at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)
at java.net.URLClassLoader.defineClass(URLClassLoader.java:449)
at java.net.URLClassLoader.access$100(URLClassLoader.java:71)
at java.net.URLClassLoader$1.run(URLClassLoader.java:361)
at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
at org.apache.hcatalog.mapreduce.InitializeInput.getInputJobInfo(InitializeInput.java:146)
at org.apache.hcatalog.mapreduce.InitializeInput.setInput(InitializeInput.java:86)
at org.apache.hcatalog.mapreduce.HCatInputFormat.setInput(HCatInputFormat.java:86)
at org.apache.hcatalog.mapreduce.HCatInputFormat.setInput(HCatInputFormat.java:55)
at org.apache.hcatalog.mapreduce.HCatInputFormat.setInput(HCatInputFormat.java:47)
at UseHCat.run(UseHCat.java:64)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:84)
at UseHCat.main(UseHCat.java:91)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.util.RunJar.main(RunJar.java:212)
Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.hive.ql.metadata.HiveStorageHandler
at java.net.URLClassLoader$1.run(URLClassLoader.java:366)
at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
... 26 more
最佳答案
Hive的开发是为了最大程度地减少编写mapreduce程序。您可以使用Hive查询执行该过程,在内部它将转换为mapreduce作业。
但是,如果要访问Hivedb数据,则可以访问。 Hive不是数据库。所有数据以可读格式存储在仓库目录下。您可以提供完整路径作为mapreduce程序的输入。
您是否在Eclipse中尝试过mapreduce示例程序。因为您已经构建了Hadoop插件,或者可以在Eclipse中使用现有的插件来运行mapreduce。
关于hadoop - 如何在MapReduce作业中导入存储在Hive中的表数据?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/26956618/
我正在处理一个处理大量数据的项目,所以我最近发现了 MapReduce,在我进一步深入研究之前,我想确保我的期望是正确的。 与数据的交互将通过 Web 界面进行,因此响应时间在这里至关重要,我认为 1
我正在阅读有关 Hadoop 以及它的容错性的文章。我阅读了 HDFS 并阅读了如何处理主节点和从节点的故障。但是,我找不到任何提及 mapreduce 如何执行容错的文档。特别是,当包含 Job T
我正在尝试在我的 Ubuntu 桌面上使用最新的 Hadoop 版本 2.6.0、Java SDK 1.70 来模拟 Hadoop 环境。我用必要的环境参数配置了 hadoop,它的所有进程都已启动并
就目前情况而言,这个问题不太适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、民意调查或扩展讨论。如果您觉得这个问题可以改进并可能重新开放,visit
我只是想针对我们正在做的一些数据分析工作来评估 HBase。 HBase 将包含我们的事件数据。键为 eventId + 时间。我们想要对日期范围内的几种事件类型 (4-5) 进行分析。事件类型总数约
是否有一种快速算法可以在 MapReduce 框架上运行以从巨大的整数集中查找中位数? 最佳答案 我会这样做。这是顺序快速选择的一种并行版本。 (某些映射/归约工具可能不会让您轻松完成任务...) 从
我正在尝试对大型分布式数据集执行一些数值计算。该算法非常适合 MapReduce 模型,具有以下附加属性:与输入数据相比,映射步骤的输出尺寸较小。数据可以被视为只读,并且静态分布在节点上(故障转移时的
假设我在 RavenDb 中有给定的文档结构 public class Car { public string Manufacturer {get;set;} public int B
我刚刚开始使用 mongo 和 map/reduce,在使用 pymongo 时我遇到了以下错误,而在直接使用 mongo 命令行时我没有得到(我意识到有一个类似的问题这个,但我的似乎更基本)。 我直
*基本上我正在尝试按过去一小时内的得分对对象进行排序。 我正在尝试为我的数据库中的对象生成每小时投票总和。投票嵌入到每个对象中。对象架构如下所示: { _id: ObjectId sc
我们怎样才能使我们的 MapReduce 查询更快? 我们使用五节点 Riak 数据库集群构建了一个应用程序。 我们的数据模型由三个部分组成:比赛、联赛和球队。 比赛包含联赛和球队的链接: 型号 va
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,以便用事实和引用来回答。 关闭 6 年前。
有没有什么方法可以在运行时获取应用程序 ID - 例如 - 带有 yarn 的 wordcount 示例命令? 我希望使用 yarn 从另一个进程启 Action 业命令,并通过 YARN REST
如何在Hadoop Map-reduce程序中使用机器学习算法?我想使用分类算法、决策树、聚类算法。除了 Mahout 之外,请提出一些想法。 最佳答案 您可以编写自己的MapReduce程序,并在m
虽然 MapReduce 可能不是实现图像处理中使用的算法的最佳方式,但出于好奇,如果我作为初学者尝试使用它们,这将是最简单的实现方式。 最佳答案 Hadoop 非常适合处理大量 IO。因此,例如,您
我只是想验证我对这些参数及其关系的理解,如果我错了请通知我。 mapreduce.reduce.shuffle.input.buffer.percent 告诉分配给 reducer 的整个洗牌阶段的内
HBase 需要 mapreduce/yarn,还是只需要 hdfs? 对于 HBase 的基本用法,例如创建表、插入数据、扫描/获取数据,我看不出有任何理由使用 mapreduce/yarn。 请帮
我问了一些关于提高 Hive 查询性能的问题。一些答案与映射器和化简器的数量有关。我尝试了多个映射器和化简器,但在执行过程中没有发现任何差异。不知道为什么,可能是我没有以正确的方式去做,或者我错过了别
我是 mapreduce 和 hadoop 的新手。我阅读了 mapreduce 的示例和设计模式... 好的,我们可以进入正题了。我们正在开发一种软件,可以监控系统并定期捕获它们的 CPU 使用
我正在使用 Microsoft MapReduce SDK 启动仅 Mapper 作业。 调用 hadoop.MapReduceJob.ExecuteJob 立即抛出“响应状态代码不表示成功:404(
我是一名优秀的程序员,十分优秀!