- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个 pandas HDFStore,我尝试从中进行选择。我想在一个大的 np.array 中选择两个时间戳之间的数据和一个 id。以下代码可以工作,但仅在查询列表中的成员身份时才会占用过多内存。如果我使用日期时间索引和范围,内存占用量会减少 95%。
#start_ts, end_ts are timestamps
#instruments is an array of python objects
not_memory_efficient = adj_data.select("US", [Term("date",">=", start_ts),
Term("date", "<=", end_ts),
Term("id", "=", instruments)])
memory_efficient = adj_data.select("US", [Term("date",">=", start_ts),
Term("date", "<=", end_ts),)
在 HDFStore 中是否有更节省内存的方法来执行此操作?我应该将索引设置为“sec_id”吗? (我也可以使用 chunksize 选项并自己连接,但这似乎有点麻烦。)
编辑:
hdfstore 是由 pd.HDFStore 创建的,它创建一个数据帧并存储如下内容。我之前犯了一个错误
def write_data(country_data, store_file):
for country in country_data:
if len(country_data[country]) == 0:
continue
df = pd.concat(country_data[country], ignore_index=True)
country_data[country] = []
store_file.append(country, df, format="t")
根据要求,这是该表的 ptdump:https://gist.github.com/MichaelWS/7980846另外,这是 df:https://gist.github.com/MichaelWS/7981451
最佳答案
为了纪念其他用户。
在HDFStore中,如果某些列不是索引,则需要将其指定为data_columns,以便以后查询。
文档是 here
创建框架
In [23]: df = DataFrame(dict(date = pd.date_range('20130101',periods=10), id = list('abcabcabcd'), C = np.random.randn(10)))
In [28]: df
Out[28]:
C date id
0 0.605701 2013-01-01 00:00:00 a
1 0.451346 2013-01-02 00:00:00 b
2 0.479483 2013-01-03 00:00:00 c
3 -0.012589 2013-01-04 00:00:00 a
4 -0.028552 2013-01-05 00:00:00 b
5 0.737100 2013-01-06 00:00:00 c
6 -1.050292 2013-01-07 00:00:00 a
7 0.137444 2013-01-08 00:00:00 b
8 -0.327491 2013-01-09 00:00:00 c
9 -0.660220 2013-01-10 00:00:00 d
[10 rows x 3 columns]
保存到 hdf,不带 data_columns
In [24]: df.to_hdf('test.h5','df',mode='w',format='table')
0.13将报告此错误(0.12将只是默默地忽略)
In [25]: pd.read_hdf('test.h5','df',where='date>20130101 & date<20130105 & id=["b","c"]')
ValueError: The passed where expression: date>20130101 & date<20130105 & id=["b","c"]
contains an invalid variable reference
all of the variable refrences must be a reference to
an axis (e.g. 'index' or 'columns'), or a data_column
The currently defined references are: index,columns
将所有列设置为数据列(也可以是特定的列列表)
In [26]: df.to_hdf('test.h5','df',mode='w',format='table',data_columns=True)
In [27]: pd.read_hdf('test.h5','df',where='date>20130101 & date<20130105 & id=["b","c"]')
Out[27]:
C date id
1 0.451346 2013-01-02 00:00:00 b
2 0.479483 2013-01-03 00:00:00 c
[2 rows x 3 columns]
这是文件的 ptdump -av
的表节点:
/df/table (Table(10,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"C": Float64Col(shape=(), dflt=0.0, pos=1),
"date": Int64Col(shape=(), dflt=0, pos=2),
"id": StringCol(itemsize=1, shape=(), dflt='', pos=3)}
byteorder := 'little'
chunkshape := (2621,)
autoindex := True
colindexes := {
"date": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"C": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"id": Index(6, medium, shuffle, zlib(1)).is_csi=False}
/df/table._v_attrs (AttributeSet), 19 attributes:
[CLASS := 'TABLE',
C_dtype := 'float64',
C_kind := ['C'],
FIELD_0_FILL := 0,
FIELD_0_NAME := 'index',
FIELD_1_FILL := 0.0,
FIELD_1_NAME := 'C',
FIELD_2_FILL := 0,
FIELD_2_NAME := 'date',
FIELD_3_FILL := '',
FIELD_3_NAME := 'id',
NROWS := 10,
TITLE := '',
VERSION := '2.7',
date_dtype := 'datetime64',
date_kind := ['date'],
id_dtype := 'string8',
id_kind := ['id'],
index_kind := 'integer']
要注意的关键是 data_columns 在“描述”中是分开的,并且它们被设置为索引。
关于pandas - HDFStore 术语内存有效方法来检查列表中的成员资格,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/20598973/
我将所有数据都放入了 HDFStore(是的!),但是如何从中取出数据.. 我在我的 HDFStore 中保存了 6 个数据帧作为 frame_table。这些表格中的每一个看起来如下所示,但长度各不
我确定这可能非常简单,但我无法弄清楚如何通过日期时间索引对 Pandas HDFStore 表进行切片以获得特定范围的行。 我有一个看起来像这样的表: mdstore = pd.HDFStore(st
我有一个 pandas HDFStore,我尝试从中进行选择。我想在一个大的 np.array 中选择两个时间戳之间的数据和一个 id。以下代码可以工作,但仅在查询列表中的成员身份时才会占用过多内存。
我对 pandas' HDFStore 有一些问题速度太慢了,不幸的是我无法从这里的其他问题中找到令人满意的解决方案。 情况 我有一个很大的 DataFrame,其中大部分包含 float ,有时包含
我对 pandas' HDFStore 有一些问题速度太慢了,不幸的是我无法从这里的其他问题中找到令人满意的解决方案。 情况 我有一个很大的 DataFrame,其中大部分包含 float ,有时包含
清楚我做错了什么吗? 我正在尝试 pandas HDFStore.select start 和 stop 选项,但没有什么区别。 我使用的命令是: import pandas as pd hdf =
我希望将我读入的两个表存储在数据框中。 我正在将 h5 文件读入我的代码中: with pd.HDFStore(directory_path) as store: self.df = stor
我在平面文件中有数 TB 的数据(在子集中),我想使用 Python Pandas/Pytables/H5py 将这些数据转换为 HDF5 以加快查询和搜索速度。我计划使用 to_hdf 之类的方法转
我有一个 pandas HDFStore,我试图从中进行选择。我想在一个大的 np.array 中选择两个带有 id 的时间戳之间的数据。以下代码有效,但仅在查询列表中的成员资格时占用过多内存。如果我
问题:如何创建一个允许对 pandas HDFStore 对象中的多个列进行迭代的生成器? 我正在尝试为 pandas HDFStore 对象创建一个包装类。我试图实现的功能之一是能够按给定的 blo
我在具有多索引的 HDFStore 中将frame_table 称为“数据”。在 DataFrame 中,它可能看起来像这样 var1 var2 va
以下代码片段: HDFStore = pandas.io.pytables.HDFStore lock = threading.RLock() with lock:
Pandas "Group By" Query on Large Data in HDFStore? 我已经尝试了答案中的示例,只是我希望能够按两列进行分组。 基本上,修改代码看起来像 with pd
我通过 Pandas 将大量数据帧导出到一系列 HDFStore 文件。我需要能够根据需要快速提取每个数据帧的最新记录。 设置: File path: /data/storage_X100.hdf
这很好用: cols = ['X', 'Y'] ind = [('A', 1), ('B', 2)] ind = pd.MultiIndex.from_tuples(index, names=['fo
假设我有一个 store = pd.HDFStore('cache/cache.h5') 我有一个存储的 DataFrame store['myDF'] 如果在我的代码中,我这样做: a = stor
我是 pytables 的新手,对存储压缩的 pandas DataFrame 有疑问。我当前的代码是: import pandas # HDF5 file name H5name="C:\\MyDi
我想知道为什么 HDFStore 会在 pandas 中的字符串列上发出警告。我认为它可能是我真实数据库中的 NaN,但在这里尝试它会给我两个列的警告,即使一个没有混合并且只是字符串。 使用 .13.
我正在试验不同的 pandas 友好存储方案来存储报价数据。迄今为止最快的(就读取和写入而言)是使用具有 blosc 压缩和“固定”格式的 HDFStore。 store = pd.HDFStore(
我有以下 DataFrame,它作为名为数据的 frame_table 存储在 HDFStore 对象中: shipmentid qty catid
我是一名优秀的程序员,十分优秀!