- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试在MapReduce上执行Weka并且标准输出始终为空
这是运行整个程序的类。它负责
为了从用户那里获得输入,设置映射器和化简器,
组织weka输入等
public class WekDoop {
* The main method of this program.
* Precondition: arff file is uploaded into HDFS and the correct
* number of parameters were passed into the JAR file when it was run
*
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
// Make sure we have the correct number of arguments passed into the program
if (args.length != 4) {
System.err.println("Usage: WekDoop <# of splits> <classifier> <input file> <output file>");
System.exit(1);
}
// configure the job using the command line args
conf.setInt("Run-num.splits", Integer.parseInt(args[0]));
conf.setStrings("Run.classify", args[1]);
conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization," + "org.apache.hadoop.io.serializer.WritableSerialization");
// Configure the jobs main class, mapper and reducer
// TODO: Make the Job name print the name of the currently running classifier
Job job = new Job(conf, "WekDoop");
job.setJarByClass(WekDoop.class);
job.setMapperClass(WekaMap.class);
job.setReducerClass(WekaReducer.class);
// Start with 1
job.setNumReduceTasks(1);
// This section sets the values of the <K2, V2>
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(weka.classifiers.bayes.NaiveBayes.class);
job.setOutputValueClass(AggregateableEvaluation.class);
// Set the input and output directories based on command line args
FileInputFormat.addInputPath(job, new Path(args[2]));
FileOutputFormat.setOutputPath(job, new Path(args[3]));
// Set the input type of the environment
// (In this case we are overriding TextInputFormat)
job.setInputFormatClass(WekaInputFormat.class);
// wait until the job is complete to exit
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
public class WekaMap extends Mapper<Object, Text, Text, AggregateableEvaluation> {
private Instances randData = null;
private Classifier cls = null;
private AggregateableEvaluation eval = null;
private Classifier clsCopy = null;
// Run 10 mappers
private String numMaps = "10";
// TODO: Make sure this is not hard-coded -- preferably a command line arg
// Set the classifier
private String classname = "weka.classifiers.bayes.NaiveBayes";
private int seed = 20;
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
System.out.println("CURRENT LINE: " + line);
//line = "/home/ubuntu/Workspace/hadoop-1.1.0/hadoop-data/spambase_processed.arff";
Configuration conf = new Configuration();
FileSystem fileSystem = FileSystem.get(conf);
Path path = new Path("/home/hduser/very_small_spam.arff");
// Make sure the file exists...
if (!fileSystem.exists(path)) {
System.out.println("File does not exists");
return;
}
JobID test = context.getJobID();
TaskAttemptID tid = context.getTaskAttemptID();
// Set up the weka configuration
Configuration wekaConfig = context.getConfiguration();
numMaps = wekaConfig.get("Run-num.splits");
classname = wekaConfig.get("Run.classify");
String[] splitter = tid.toString().split("_");
String jobNumber = "";
int n = 0;
if (splitter[4].length() > 0) {
jobNumber = splitter[4].substring(splitter[4].length() - 1);
n = Integer.parseInt(jobNumber);
}
FileSystem fs = FileSystem.get(context.getConfiguration());
System.out.println("PATH: " + path);
// Read in the data set
context.setStatus("Reading in the arff file...");
readArff(fs, path.toString());
context.setStatus("Done reading arff! Initializing aggregateable eval...");
try {
eval = new AggregateableEvaluation(randData);
}
catch (Exception e1) {
e1.printStackTrace();
}
// Split the data into two sets: Training set and a testing set
// this will allow us to use a little bit of data to train the classifier
// before running the classifier on the rest of the dataset
Instances trainInstance = randData.trainCV(Integer.parseInt(numMaps), n);
Instances testInstance = randData.testCV(Integer.parseInt(numMaps), n);
// Set parameters to be passed to the classifiers
String[] opts = new String[3];
if (classname.equals("weka.classifiers.lazy.IBk")) {
opts[0] = "";
opts[1] = "-K";
opts[2] = "1";
}
else if (classname.equals("weka.classifiers.trees.J48")) {
opts[0] = "";
opts[1] = "-C";
opts[2] = "0.25";
}
else if (classname.equals("weka.classifiers.bayes.NaiveBayes")) {
opts[0] = "";
opts[1] = "";
opts[2] = "";
}
else {
opts[0] = "";
opts[1] = "";
opts[2] = "";
}
// Start setting up the classifier and its various options
try {
cls = (Classifier) Utils.forName(Classifier.class, classname, opts);
}
catch (Exception e) {
e.printStackTrace();
}
// These are all used for timing different processes
long beforeAbstract = 0;
long beforeBuildClass = 0;
long afterBuildClass = 0;
long beforeEvalClass = 0;
long afterEvalClass = 0;
try {
// Create the classifier and record how long it takes to set up
context.setStatus("Creating the classifier...");
System.out.println(new Timestamp(System.currentTimeMillis()));
beforeAbstract = System.currentTimeMillis();
clsCopy = AbstractClassifier.makeCopy(cls);
beforeBuildClass = System.currentTimeMillis();
System.out.println(new Timestamp(System.currentTimeMillis()));
// Train the classifier on the training set and record how long this takes
context.setStatus("Training the classifier...");
clsCopy.buildClassifier(trainInstance);
afterBuildClass = System.currentTimeMillis();
System.out.println(new Timestamp(System.currentTimeMillis()));
beforeEvalClass = System.currentTimeMillis();
// Run the classifer on the rest of the data set and record its duration as well
context.setStatus("Evaluating the model...");
eval.evaluateModel(clsCopy, testInstance);
afterEvalClass = System.currentTimeMillis();
System.out.println(new Timestamp(System.currentTimeMillis()));
// We are done this iteration!
context.setStatus("Complete");
}
catch (Exception e) {
System.out.println("Debugging strarts here!");
e.printStackTrace();
}
// calculate the total times for each section
long abstractTime = beforeBuildClass - beforeAbstract;
long buildTime = afterBuildClass - beforeBuildClass;
long evalTime = afterEvalClass - beforeEvalClass;
// Print out the times
System.out.println("The value of creation time: " + abstractTime);
System.out.println("The value of Build time: " + buildTime);
System.out.println("The value of Eval time: " + evalTime);
context.write(new Text(line), eval);
}
/**
* This can be used to write out the results on HDFS, but it is not essential
* to the success of this project. If time allows, we can implement it.
*/
public void writeResult() {
}
/**
* This method reads in the arff file that is provided to the program.
* Nothing really special about the way the data is handled.
*
* @param fs
* @param filePath
* @throws IOException
* @throws InterruptedException
*/
public void readArff(FileSystem fs, String filePath) throws IOException, InterruptedException {
BufferedReader reader;
DataInputStream d;
ArffReader arff;
Instance inst;
Instances data;
try {
// Read in the data using a ton of wrappers
d = new DataInputStream(fs.open(new Path(filePath)));
reader = new BufferedReader(new InputStreamReader(d));
arff = new ArffReader(reader, 100000);
data = arff.getStructure();
data.setClassIndex(data.numAttributes() - 1);
// Add each line to the input stream
while ((inst = arff.readInstance(data)) != null) {
data.add(inst);
}
reader.close();
Random rand = new Random(seed);
randData = new Instances(data);
randData.randomize(rand);
// This is how weka handles the sampling of the data
// the stratify method splits up the data to cross validate it
if (randData.classAttribute().isNominal()) {
randData.stratify(Integer.parseInt(numMaps));
}
}
catch (IOException e) {
e.printStackTrace();
}
}
}
public class WekaReducer extends Reducer<Text, AggregateableEvaluation, Text, IntWritable> {
Text result = new Text();
Evaluation evalAll = null;
IntWritable test = new IntWritable();
AggregateableEvaluation aggEval;
/**
* The reducer method takes all the stratified, cross-validated
* values from the mappers in a list and uses an aggregatable evaluation to consolidate
* them.
*/
public void reduce(Text key, Iterable<AggregateableEvaluation> values, Context context) throws IOException, InterruptedException {
int sum = 0;
// record how long it takes to run the aggregation
System.out.println(new Timestamp(System.currentTimeMillis()));
long beforeReduceTime = System.currentTimeMillis();
// loop through each of the values and "aggregate"
// which basically means to consolidate the values
for (AggregateableEvaluation val : values) {
System.out.println("IN THE REDUCER!");
// The first time through, give aggEval a value
if (sum == 0) {
try {
aggEval = val;
}
catch (Exception e) {
e.printStackTrace();
}
}
else {
// combine the values
aggEval.aggregate(val);
}
try {
// This is what is taken from the mapper to be aggregated
System.out.println("This is the map result");
System.out.println(aggEval.toMatrixString());
}
catch (Exception e) {
e.printStackTrace();
}
sum += 1;
}
// Here is where the typical weka matrix output is generated
try {
System.out.println("This is reduce matrix");
System.out.println(aggEval.toMatrixString());
}
catch (Exception e) {
e.printStackTrace();
}
// calculate the duration of the aggregation
context.write(key, new IntWritable(sum));
long afterReduceTime = System.currentTimeMillis();
long reduceTime = afterReduceTime - beforeReduceTime;
// display the output
System.out.println("The value of reduce time is: " + reduceTime);
System.out.println(new Timestamp(System.currentTimeMillis()));
}
}
public class WekaInputFormat extends TextInputFormat {
public List<InputSplit> getSplits(JobContext job) throws IOException {
long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
long maxSize = getMaxSplitSize(job);
List<InputSplit> splits = new ArrayList<InputSplit>();
for (FileStatus file: listStatus(job)) {
Path path = file.getPath();
FileSystem fs = path.getFileSystem(job.getConfiguration());
//number of bytes in this file
long length = file.getLen();
BlockLocation[] blkLocations = fs.getFileBlockLocations(file, 0, length);
// make sure this is actually a valid file
if(length != 0) {
// set the number of splits to make. NOTE: the value can be changed to anything
int count = job.getConfiguration().getInt("Run-num.splits", 1);
for(int t = 0; t < count; t++) {
//split the file and add each chunk to the list
splits.add(new FileSplit(path, 0, length, blkLocations[0].getHosts()));
}
}
else {
// Create empty array for zero length files
splits.add(new FileSplit(path, 0, length, new String[0]));
}
}
return splits;
}
}
最佳答案
对于每个映射器,reducer和整体作业,都有一个stderr文件,stdout文件和syslog文件。
您正在打印到映射器和化简器中的stdout,因此您应该检查映射器和化简器的stdout文件而不是整个作业的文件。
祝你好运
关于java - Hadoop stdout始终为空,写入的字节为零,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29586423/
美好的一天!我试图添加两个字节变量并注意到奇怪的结果。 byte valueA = 255; byte valueB = 1; byte valueC = (byte)(valueA + valueB
嗨,我是 swift 的新手,我正在尝试解码以 [Byte] 形式发回给我的字节数组?当我尝试使用 if let string = String(bytes: d, encoding: .utf8)
我正在使用 ipv4 和 ipv6 存储在 postgres 数据库中。 因为 ipv4 需要 32 位(4 字节)而 ipv6 需要 128(16 字节)位。那么为什么在 postgres 中 CI
我很好奇为什么 Go 不提供 []byte(*string) 方法。从性能的角度来看,[]byte(string) 不会复制输入参数并增加更多成本(尽管这看起来很奇怪,因为字符串是不可变的,为什么要复
我正在尝试为UDP实现Stop-and-Wait ARQ。根据停止等待约定,我在 0 和 1 之间切换 ACK。 正确的 ACK 定义为正确的序列号(0 或 1)AND消息长度。 以下片段是我的代码的
我在下面写了一些代码,目前我正在测试,所以代码中没有数据库查询。 下面的代码显示 if(filesize($filename) != 0) 总是转到 else,即使文件不是 0 字节而是 16 字节那
我使用 Apache poi 3.8 来读取 xls 文件,但出现异常: java.io.IOException: Unable to read entire header; 0 by
字典大小为 72 字节(根据 getsizeof(dict) 在字典上调用 .clear() 之后发生了什么,当新实例化的字典返回 240 字节时? 我知道一个简单的 dict 的起始大小为“8”,并
我目前正在努力创建一个函数,它接受两个 4 字节无符号整数,并返回一个 8 字节无符号长整数。我试图将我的工作基于 this research 描述的方法,但我的所有尝试都没有成功。我正在处理的具体输
看看这个简单的程序: #include using namespace std; int main() { unsigned int i=0x3f800000; float* p=(float*)(
我创建了自己的函数,将一个字符串转换为其等效的 BCD 格式的 bytes[]。然后我将此字节发送到 DataOutputStram (使用需要 byte[] 数组的写入方法)。问题出在数字字符串“8
此分配器将在具有静态内存的嵌入式系统中使用(即,没有可用的系统堆,因此“堆”将只是“char heap[4096]”) 周围似乎有很多“小型内存分配器”,但我正在寻找能够处理非常小的分配的一个。我说的
我将数据库脚本从 64 位系统传输到 32 位系统。当我执行脚本时,出现以下错误, Warning! The maximum key length is 900 bytes. The index 'U
想知道 128 字节 ext2 和 256 字节 ext3 文件系统之间的 inode 数据结构差异。 我一直在为 ext2、128 字节 inode 使用此引用:http://www.nongnu.
我试图理解使用 MD5 哈希作为 Cassandra key 在“内存/存储消耗”方面的含义: 我的内容(在 Java 中)的 MD5 哈希 = byte[] 长 16 个字节。 (16 字节来自维基
检查其他人是否也遇到类似问题。 shell脚本中的代码: ## Convert file into Unix format first. ## THIS is IMPORTANT. ###
我们有一个测量数据处理应用程序,目前所有数据都保存为 C++ float,这意味着在我们的 x86/Windows 平台上为 32 位/4 字节。 (32 位 Windows 应用程序)。 由于精度成
我读到在 Java 中 long 类型可以提升为 float 和 double ( http://www.javatpoint.com/method-overloading-in-java )。我想问
我有一个包含 n 个十进制元素的列表,其中每个元素都是两个字节长。 可以说: x = [9000 , 5000 , 2000 , 400] 这个想法是将每个元素拆分为 MSB 和 LSB 并将其存储在
我使用以下代码进行 AES-128 加密来编码一个 16 字节的 block ,但编码值的长度给出了 2 个 32 字节的 block 。我错过了什么吗? plainEnc = AES.enc
我是一名优秀的程序员,十分优秀!