gpt4 book ai didi

Hadoop 二级排序 - 使用或不使用

转载 作者:行者123 更新时间:2023-12-02 21:35:41 24 4
gpt4 key购买 nike

我有来自交通数据分析的事故输入数据。一些列是:

事故 ID、事故日期、星期几

1, 1/1/1979, 5 (星期四)

2, 1/2/1979, 6 (星期五)

…………

3, 1/1/1980, 0 (星期日)

我正在尝试解决以下问题:

查找每年每天发生的事故数量

所以输出应该是这样的:

其中键是(年,星期几)

和值=当天的事故数量
这里第 1 行代表 , 年 =1979 日 = 星期日,事故数量 =500 等等。

1979,1     500

1979,2 1500

1979,3 2500

1979,4 3500

1979,5 4500

1979,6 5500

1979,7 6500

1980,1 500

1980,2 1500

1980,3 2500

1980,4 3500

1980,5 4500

在这种情况下,我尝试使用辅助排序方法来解决它。这是解决这个问题的正确方法吗?

如果二级排序是正确的方法,它对我不起作用。这里是关键类,mapper和reducer。但是我的输出并没有达到预期。请帮忙 ..
public class DOW implements WritableComparable<DOW> {
private Text year;
private Text day;

// private final Text count;

// private int count;
public DOW() {
this.year = new Text();
this.day = new Text();
// this.count = count;
}

public DOW(Text year, Text day) {
this.year = year;
this.day = day;
// this.count = count;
}

public Text getYear() {
return this.year;
}

public void setYear(Text year) {
this.year = year;
}

public Text getDay() {
return this.day;
}

public void setDay(Text day) {
this.day = day;
}

@Override
public void readFields(DataInput in) throws IOException {
// TODO Auto-generated method stub
year.readFields(in);
day.readFields(in);

}

@Override
public void write(DataOutput out) throws IOException {
// TODO Auto-generated method stub
year.write(out);
day.write(out);
}

@Override
public int compareTo(DOW o) {
// TODO Auto-generated method stub
int cmp = year.compareTo(o.year);
if (cmp != 0) {
return cmp;
}
return o.day.compareTo(this.day);
}

@Override
public String toString() {
// TODO Auto-generated method stub
return year + "," + day;
}

@Override
public boolean equals(Object o) {
// TODO Auto-generated method stub
if (o instanceof DOW) {
DOW tp = (DOW) o;
return year.equals(tp.year) && day.equals(tp.day);
}
return false;
}

@Override
public int hashCode() {
// TODO Auto-generated method stub
return year.hashCode() * 163 + day.hashCode();
}
}

public class AccidentDowDemo extends Configured implements Tool {

public static class DOWMapper extends Mapper<LongWritable, Text, DOW, IntWritable> {
private static final Logger sLogger = Logger.getLogger(DOWMapper.class);

@Override
protected void map(LongWritable key, Text value, Context context)
throws java.io.IOException, InterruptedException {

if (value.toString().contains(",")) {
String[] array = value.toString().split(",");
if (!array[9].equals("Date")) {
Date dt = null;
try {
dt = new SimpleDateFormat("dd/mm/yyyy").parse(array[9]);

} catch (ParseException e) {
// TODO Auto-generated catch block

e.printStackTrace();
}

int year = dt.getYear();

int day = Integer.parseInt(array[10].toString());
context.write(new DOW(new Text(Integer.toString(year)),
new Text(Integer.toString(day))),
new IntWritable(1));
}
}
};
}

public static class DOWReducer extends Reducer<DOW, IntWritable, DOW, IntWritable> {
private static final Logger sLogger = Logger
.getLogger(DOWReducer.class);

@Override
protected void reduce(DOW key, Iterable<IntWritable> values,
Context context) throws java.io.IOException,
InterruptedException {
int count = 0;
sLogger.info("key =" + key);
for (IntWritable x : values) {
int val = Integer.parseInt(x.toString());
count = count + val;
}
context.write(key, new IntWritable(count));
};
}

public static class FirstPartitioner extends Partitioner<DOW, IntWritable> {

@Override
public int getPartition(DOW key, IntWritable value, int numPartitions) {
// TODO Auto-generated method stub

return Math.abs(Integer.parseInt(key.getYear().toString()) * 127)
% numPartitions;
}
}

public static class KeyComparator extends WritableComparator {
protected KeyComparator() {
super(DOW.class, true);
}

@Override
public int compare(WritableComparable w1, WritableComparable w2) {
// TODO Auto-generated method stub

DOW ip1 = (DOW) w1;
DOW ip2 = (DOW) w2;
int cmp = ip1.getYear().compareTo(ip2.getYear());
if (cmp == 0) {
cmp = -1 * ip1.getDay().compareTo(ip2.getDay());
}
return cmp;
}
}

public static class GroupComparator extends WritableComparator {
protected GroupComparator() {
super(DOW.class, true);
}

@Override
public int compare(WritableComparable w1, WritableComparable w2) {

// TODO Auto-generated method stub
DOW ip1 = (DOW) w1;
DOW ip2 = (DOW) w2;
return ip1.getYear().compareTo(ip2.getYear());
}
}
}

最佳答案

如果你需要基本模拟

select year, day, count(*) as totalPerDay from DATA group by year, day

比你不需要二次排序。

但是,如果您需要生成类似于 CUBE 的东西,您需要计算一项 MR 工作中每年的总数和每周的总数,那么二次排序是可行的方法。

关于Hadoop 二级排序 - 使用或不使用,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/32470773/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com