- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我这里有一个无意义的小脚本,我正在 MATLAB R2013b 中执行它:
clear all;
n = 2000;
times = 50;
i = 0;
tCPU = tic;
disp 'CPU::'
A = rand(n, n);
B = rand(n, n);
disp '::Go'
for i = 0:times
CPU = A * B;
end
tCPU = toc(tCPU);
tGPU = tic;
disp 'GPU::'
A = gpuArray(A);
B = gpuArray(B);
disp '::Go'
for i = 0:times
GPU = A * B ;
end
tGPU = toc(tGPU);
fprintf('On CPU: %.2f sec\nOn GPU: %.2f sec\n', tCPU, tGPU);
不幸的是,执行后我收到一条来自 Windows 的消息:“显示驱动程序停止工作并已恢复。”。
我认为这意味着 Windows 没有从我的显卡驱动程序或其他东西获得响应。脚本返回且没有错误:
>> test
CPU::
::Go
GPU::
::Go
On CPU: 11.01 sec
On GPU: 2.97 sec
但是无论 GPU 是否耗尽内存,在我重新启动之前 MATLAB 都无法使用 GPU 设备。如果我不重新启动 MATLAB,我只会收到来自 CUDA 的消息:
>> test
Warning: An unexpected error occurred during CUDA
execution. The CUDA error was:
CUDA_ERROR_LAUNCH_TIMEOUT
> In test at 1
Warning: An unexpected error occurred during CUDA
execution. The CUDA error was:
CUDA_ERROR_LAUNCH_TIMEOUT
> In test at 1
Warning: An unexpected error occurred during CUDA
execution. The CUDA error was:
CUDA_ERROR_LAUNCH_TIMEOUT
> In test at 1
Warning: An unexpected error occurred during CUDA
execution. The CUDA error was:
CUDA_ERROR_LAUNCH_TIMEOUT
> In test at 1
CPU::
::Go
GPU::
Error using gpuArray
An unexpected error occurred during CUDA execution.
The CUDA error was:
the launch timed out and was terminated
Error in test (line 21)
A = gpuArray(A);
有人知道如何避免这个问题或者我在这里做错了什么吗?
如果需要,我的 GPU 设备:
>> gpuDevice
ans =
CUDADevice with properties:
Name: 'GeForce GTX 660M'
Index: 1
ComputeCapability: '3.0'
SupportsDouble: 1
DriverVersion: 6
ToolkitVersion: 5
MaxThreadsPerBlock: 1024
MaxShmemPerBlock: 49152
MaxThreadBlockSize: [1024 1024 64]
MaxGridSize: [2.1475e+09 65535 65535]
SIMDWidth: 32
TotalMemory: 2.1475e+09
FreeMemory: 1.9037e+09
MultiprocessorCount: 2
ClockRateKHz: 950000
ComputeMode: 'Default'
GPUOverlapsTransfers: 1
KernelExecutionTimeout: 1
CanMapHostMemory: 1
DeviceSupported: 1
DeviceSelected: 1
最佳答案
关键信息是 gpuDevice
输出的这一部分:
KernelExecutionTimeout: 1
这意味着主机显示驱动程序在您运行计算作业的 GPU 上处于事件状态。 NVIDIA 显示驱动程序包含一个看门狗定时器,它会终止任何花费超过预定义时间的任务,而不将控制权交还给驱动程序以进行屏幕刷新。这是为了防止出现长时间运行或卡住的计算作业通过卡住显示而导致计算机无响应的情况。 Matlab 脚本的运行时间显然超出了显示驱动程序看门狗定时器的限制。一旦发生这种情况,设备上保存的计算上下文将被破坏,Matlab 无法再使用该设备进行操作。您也许可以通过调用 reset
来重新初始化上下文。 ,我猜它会在幕后运行 cudaDeviceReset()
。
互联网上有很多有关此看门狗定时器的信息 - 例如 this Stack Overflow question 。如何修改此超时的解决方案取决于您的操作系统和硬件。避免这种情况的最简单方法是不在显示 GPU 上运行 CUDA 代码,或者增加计算作业的粒度,以便没有任何操作的运行时间超过超时限制。或者只是编写更快的代码...
关于matlab - GPU上计算导致驱动程序错误 "stopped responding",我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21971484/
谁能解释或指出在多 GPU/多显示器设置中渲染如何工作的解释(或至少一些线索)? 例如,我安装了 5 个 NVIDIA Quadro 4000 视频卡并连接了 9 个显示器。显示不进行任何分组。刚刚在
以下代码报错: import spacy spacy.require_gpu() Traceback (most recent call last): File "/home/user/Pycha
正如问题已经暗示的那样,我是深度学习的新手。我知道模型的学习过程在没有 GPU 的情况下会很慢。如果我愿意等待,如果我只使用CPU可以吗? 最佳答案 在计算深度学习(以及一般的神经网络)中执行的许多操
我知道 Renderscript 的设计是为了掩盖我正在运行的处理器的事实,但是有没有办法编写代码,以便在支持 GPU 计算的设备(目前是 Nexus 10)上运行显卡?有什么方法可以判断脚本的功能正
关闭。这个问题是opinion-based 。目前不接受答案。 想要改进这个问题吗?更新问题,以便 editing this post 可以用事实和引文来回答它。 . 已关闭 8 年前。 Improv
我想以编程方式找出可用的 GPU 及其当前内存使用情况,并根据内存可用性使用其中一个 GPU。我想在 PyTorch 中执行此操作。 我在这个 post 中看到了以下解决方案: import torc
我喜欢 GPU Gems 的结构化技术摘要。但是自上次发布以来已经过去了很长时间,应该开发新算法来处理新型硬件。 我可以阅读有关最近 GPU 技术成就的哪些信息? 潜伏在编程板上是唯一的方法吗? 最佳
我一直在做一些关于测量数据传输延迟的实验 CPU->GPU 和 GPU->CPU。我发现对于特定消息大小,CPU->GPU 数据传输速率几乎是 GPU->CPU 传输速率的两倍。谁能解释我为什么会这样
当我使用选项 --gres=gpu:1 向具有两个 GPU 的节点提交 SLURM 作业时,如何获取为该作业分配的 GPU ID?是否有用于此目的的环境变量?我使用的 GPU 都是 nvidia GP
我用 gpu、cuda 7.0 和 cudnn 6.5 安装了 tensorflow。当我导入 tensorflow 时,它运行良好。 我正在尝试在 Tensorflow 上运行一个简单的矩阵乘法,但
我们正在寻找有关 slurm salloc gpu 分配的一些建议。目前,给定: % salloc -n 4 -c 2 -gres=gpu:1 % srun env | grep CUDA CUD
我是否必须自定义为非 GPU Tensorflow 库编写的代码以适应tensorflow-gpu 库? 我有一个 GPU,想运行仅为非 GPU tensorflow 库编写的 Python 代码。我
我是否必须自定义为非 GPU Tensorflow 库编写的代码以适应tensorflow-gpu 库? 我有一个 GPU,想运行仅为非 GPU tensorflow 库编写的 Python 代码。我
我正在使用 pytorch 框架训练网络。我的电脑里有 K40 GPU。上周,我在同一台计算机上添加了 1080。 在我的第一个实验中,我在两个 GPU 上观察到相同的结果。然后,我在两个 GPU 上
有没有办法在 Slurm 上超额订阅 GPU,即运行共享一个 GPU 的多个作业/作业步骤?我们只找到了超额订阅 CPU 和内存的方法,但没有找到 GPU。 我们希望在同一 GPU 上并行运行多个作业
我可以访问 4 个 GPU(不是 root 用户)。其中一个 GPU(2 号)表现怪异,它们的一些内存被阻塞但功耗和温度非常低(好像没有任何东西在上面运行)。请参阅下图中 nvidia-smi 的详细
我正在尝试通过 Tensorflow 运行示例 seq2seq,但它不会使用 GPU。以下是我在带有 Tesla K20x 的 Linux 系统上安装 Tensorflow 所采取的步骤 git cl
一位电气工程师最近提醒我不要使用 GPU 进行科学计算(例如,在精度非常重要的地方),因为没有像 CPU 那样的硬件保护措施。这是真的吗?如果是的话,典型硬件中的问题有多普遍/严重? 最佳答案 实际上
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 7年前关闭。 Improve thi
最近我研究了强化学习,有一个问题困扰着我,我找不到答案:如何使用 GPU 有效地完成训练?据我所知,需要与环境持续交互,这对我来说似乎是一个巨大的瓶颈,因为这项任务通常是非数学的/不可并行化的。然而,
我是一名优秀的程序员,十分优秀!