gpt4 book ai didi

hadoop - 通过oozie运行spark作业时遇到java.lang.NoSuchFieldError:INT_8错误

转载 作者:行者123 更新时间:2023-12-02 21:28:39 25 4
gpt4 key购买 nike

我在Cloudera 5.5.1版本上尝试使用OOzie执行Spark作业时遇到java.lang.NoSuchFieldError:INT_8错误。
任何帮助,将不胜感激。

请在下面找到错误stackstrace。

16/01/28 11:21:17 WARN TaskSetManager: Lost task 0.2 in stage 20.0 (TID 40, Zlab-physrv1): java.lang.NoSuchFieldError: INT_8
at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:327)
at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:312)
at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter$$anonfun$convertField$1.apply(CatalystSchemaConverter.scala:517)
at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter$$anonfun$convertField$1.apply(CatalystSchemaConverter.scala:516)
at scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:51)
at scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:60)
at scala.collection.mutable.ArrayOps$ofRef.foldLeft(ArrayOps.scala:108)
at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:516)
at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:312)
at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:521)
at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:312)
at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter$$anonfun$convert$1.apply(CatalystSchemaConverter.scala:305)
at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter$$anonfun$convert$1.apply(CatalystSchemaConverter.scala:305)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
at org.apache.spark.sql.types.StructType.foreach(StructType.scala:92)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at org.apache.spark.sql.types.StructType.map(StructType.scala:92)
at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convert(CatalystSchemaConverter.scala:305)
at org.apache.spark.sql.execution.datasources.parquet.ParquetTypesConverter$.convertFromAttributes(ParquetTypesConverter.scala:58)
at org.apache.spark.sql.execution.datasources.parquet.RowWriteSupport.init(ParquetTableSupport.scala:55)
at parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:277)
at parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:251)
at org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.<init>(ParquetRelation.scala:94)
at org.apache.spark.sql.execution.datasources.parquet.ParquetRelation$$anon$3.newInstance(ParquetRelation.scala:272)
at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:233)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)

按照我的想法,当您用来生成代码的jar和当前使用的jar存在某些差异时,我们通常会遇到此错误。

注意:当我尝试使用spark-submit命令提交同一文件时,它运行良好。

问候
尼西斯

最佳答案

最后,能够调试和解决问题。问题在于安装,因为数据节点之一具有较旧版本的 Parquet Jars(5.2 cdh发行版)。用当前版本的jar替换jar之后,它可以正常工作。

关于hadoop - 通过oozie运行spark作业时遇到java.lang.NoSuchFieldError:INT_8错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35057882/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com