gpt4 book ai didi

r - r 中的(sigmoid)曲线拟合 glm

转载 作者:行者123 更新时间:2023-12-02 21:25:34 25 4
gpt4 key购买 nike

我希望可视化两个类别(发射机)的响应变量、检测概率 (P.det) 和预测变量(距离)之间的关系,显示误差线并通过平均数据点绘制(S 形)曲线。

数据集是这样的:

df <- structure(list(distance = c(50L, 100L, 200L, 300L, 400L, 50L, 
100L, 200L, 300L, 400L), Transmitter = structure(c(1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L), .Label = c("CT", "PT"), class = "factor"),
P.det = c(0.918209097, 0.88375438, 0.709288774, 0.534977488,
0.341724516, 0.828123952, 0.822201191, 0.543289433, 0.352886247,
0.10082457), st.error = c(0.01261614, 0.014990469, 0.024136478,
0.027311169, 0.026941438, 0.018663591, 0.019420587, 0.02754911,
0.026809247, 0.017041264), ly = c(0.905592958, 0.868763911,
0.685152295, 0.50766632, 0.314783078, 0.809460361, 0.802780604,
0.515740323, 0.326077, 0.083783306), uy = c(0.930825237,
0.898744849, 0.733425252, 0.562288657, 0.368665955, 0.846787544,
0.841621778, 0.570838544, 0.379695494, 0.117865833), Valid.detections = c(18,
12.5472973, 8.608108108, 4.287162162, 2.158783784, 12.46959459,
7.956081081, 4.550675676, 1.682432432, 0.39527027), False.detections = c(0.388513514,
0.550675676, 0.368243243, 0.263513514, 0.131756757, 0.533783784,
0.385135135, 0.277027027, 0.182432432, 0.14527027)), .Names = c("distance",
"Transmitter", "P.det", "st.error", "ly", "uy", "Valid.detections",
"False.detections"), class = "data.frame", row.names = c(NA,
-10L))

我设法完成了前两部分,但卡在了最后一部分。绘制带有误差线的图形的代码:

library(lattice)
prepanel.ci <- function(x, y, ly, uy, subscripts, ...)
{
x <- as.numeric(x)
ly <- as.numeric(ly[subscripts])
uy <- as.numeric(uy[subscripts])
list(ylim = range(y, uy, ly, finite = TRUE))
}

panel.ci <- function(x, y, ly, uy, subscripts, pch = 16, ...)
{
x <- as.numeric(x)
y <- as.numeric(y)
ly <- as.numeric(ly[subscripts])
uy <- as.numeric(uy[subscripts])
panel.arrows(x, ly, x, uy, col = "black",
length = 0.25, unit = "native",
angle = 90, code = 3)
panel.xyplot(x, y, pch = pch, ...)
}

xyplot(P.det~distance, type=c("p","g"),
ylim=c(0,1),
ylab="Detection probability", xlab="Distance (m)",
group=Transmitter,
data=df,
ly = df$ly,
uy = df$uy,
prepanel = prepanel.ci,
panel = panel.superpose,
panel.groups = panel.ci,
col=c(1,1),
layout=c(1,1),
between=list(x=2),
scales=list(x=list(alternating=c(1,1), tck=c(1,0)),y=list(alternating=c(1,1), tck=c(1,0))), # ticks inside = tck=c(-1,0)
aspect=1,
main="Detection probability vs distance per transmitter type",
)

我在标题中注明“glm”的原因是因为数据分析是使用 lme4 包使用二项式 glm() 进行的。

我注意到另一个线程与我的类似:find the intersection of abline with fitted curve ,但不同之处在于,虽然我的图也基于每 1 x 1 个 y,但我的 glm 是基于每 x 多个 y。因此,在此线程中遵循相同的代码会返回一个错误,指出长度不相等。它似乎也不适用于“xyplot”。

谢谢

最佳答案

使用ggplot这相当简单:

library(ggplot2)
ggplot(data = df, aes(x = distance, y = P.det, colour = Transmitter)) +
geom_pointrange(aes(ymin = P.det - st.error, ymax = P.det + st.error)) +
geom_smooth(method = "glm", family = binomial, se = FALSE)

enter image description here

关于glm警告消息,请参见例如here

关于r - r 中的(sigmoid)曲线拟合 glm,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24656498/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com