gpt4 book ai didi

mongodb - mongo-hadoop,如何在配置单元中查询时间戳列

转载 作者:行者123 更新时间:2023-12-02 21:14:55 25 4
gpt4 key购买 nike

选择并设置格式列即可

hive> select time, date(time) from user_login limit 10;
OK
2016-05-24 10:20:26 2016-05-24
2016-05-24 10:21:03 2016-05-24
2016-05-24 10:21:06 2016-05-24
2016-05-24 10:22:21 2016-05-24
2016-05-24 10:22:24 2016-05-24
2016-05-24 10:22:32 2016-05-24
2016-05-24 10:22:49 2016-05-24
2016-05-24 10:23:12 2016-05-24
2016-05-24 10:23:53 2016-05-24
2016-05-24 10:23:53 2016-05-24
Time taken: 0.084 seconds, Fetched: 10 row(s)
但是当对time进行过滤时,结果为空
hive> select time, date(time) from user_login where date(time)=date('2016-05-24') limit 10;
Query ID = tars_20160822103939_102dd35a-c11f-4ed9-a67b-d40a9c0d60ee
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1471603982720_0033, Tracking URL = http://cdh001:8088/proxy/application_1471603982720_0033/
Kill Command = /opt/cloudera/parcels/CDH-5.8.0-1.cdh5.8.0.p0.42/lib/hadoop/bin/hadoop job -kill job_1471603982720_0033
Hadoop job information for Stage-1: number of mappers: 15; number of reducers: 0
2016-08-22 10:40:02,182 Stage-1 map = 0%, reduce = 0%
2016-08-22 10:40:37,535 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 28.94 sec
MapReduce Total cumulative CPU time: 28 seconds 940 msec
Ended Job = job_1471603982720_0033
MapReduce Jobs Launched:
Stage-Stage-1: Map: 15 Cumulative CPU: 28.94 sec HDFS Read: 67811 HDFS Write: 0 SUCCESS
Total MapReduce CPU Time Spent: 28 seconds 940 msec
OK
Time taken: 43.937 seconds
hive> select time, date(time) from user_login where date(time)='2016-05-24' limit 10;
Query ID = tars_20160822104242_394085e0-4faa-41b2-8469-cd7d3ab1a1f2
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1471603982720_0034, Tracking URL = http://cdh001:8088/proxy/application_1471603982720_0034/
Kill Command = /opt/cloudera/parcels/CDH-5.8.0-1.cdh5.8.0.p0.42/lib/hadoop/bin/hadoop job -kill job_1471603982720_0034
Hadoop job information for Stage-1: number of mappers: 15; number of reducers: 0
2016-08-22 10:42:14,425 Stage-1 map = 0%, reduce = 0%
2016-08-22 10:42:55,860 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 66.35 sec
MapReduce Total cumulative CPU time: 1 minutes 6 seconds 350 msec
Ended Job = job_1471603982720_0034
MapReduce Jobs Launched:
Stage-Stage-1: Map: 15 Cumulative CPU: 66.35 sec HDFS Read: 68831 HDFS Write: 60 SUCCESS
Total MapReduce CPU Time Spent: 1 minutes 6 seconds 350 msec
OK
NULL NULL
NULL NULL
NULL NULL
NULL NULL
NULL NULL
NULL NULL
NULL NULL
NULL NULL
NULL NULL
NULL NULL
Time taken: 49.602 seconds, Fetched: 10 row(s)

更新

创建表ddl

CREATE TABLE user_login
(
tour_id STRING,
phone STRING,
app_id STRING,
time TIMESTAMP
)
COMMENT 'mongodb.actionlog.user.login'
STORED BY 'com.mongodb.hadoop.hive.MongoStorageHandler'
WITH SERDEPROPERTIES('mongo.columns.mapping'='{}')
TBLPROPERTIES('mongo.uri'='mongodb://10.252.223.34:30000/actionlog.user.login');

环境
Hadoop 2.6.0-cdh5.8.0 
Hive 1.1.0-cdh5.8.0

最佳答案

这有效:::select time, date(time) from user_login where date(time)=TO_DATE(from_unixtime(UNIX_TIMESTAMP('2016-05-24', "yyyy-MM-dd"))) limit 10

hive> select time, date(time) from user_login where date(time)=TO_DATE(from_unixtime(UNIX_TIMESTAMP('2016-05-24', "yyyy-MM-dd"))) limit 10
OK
2016-05-24 10:20:26 2016-05-24
2016-05-24 10:21:03 2016-05-24
2016-05-24 10:21:06 2016-05-24
2016-05-24 10:22:21 2016-05-24
2016-05-24 10:22:24 2016-05-24
2016-05-24 10:22:32 2016-05-24
2016-05-24 10:22:49 2016-05-24
2016-05-24 10:23:12 2016-05-24
2016-05-24 10:23:53 2016-05-24
2016-05-24 10:23:53 2016-05-24

关于mongodb - mongo-hadoop,如何在配置单元中查询时间戳列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39071074/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com