gpt4 book ai didi

oracle - 从Oracle将数据导入Hive时Sqoop作业卡住了

转载 作者:行者123 更新时间:2023-12-02 21:04:41 28 4
gpt4 key购买 nike

因此,我试图使用Sqoop将表从Oracle导入Hive。这是我的查询

sqoop-import --hive-import --connect jdbc:oracle:thin:@10.35.10.180:1521:dms 
--table DEFECT
--hive-database inspex
--username INSPEX
--password inspex

yarn 似乎将工作分为四个部分。
17/02/17 15:15:17 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6-cdh5.9.1
17/02/17 15:15:17 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
17/02/17 15:15:17 INFO tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can override
17/02/17 15:15:17 INFO tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc.
17/02/17 15:15:18 INFO oracle.OraOopManagerFactory: Data Connector for Oracle and Hadoop is disabled.
17/02/17 15:15:18 INFO manager.SqlManager: Using default fetchSize of 1000
17/02/17 15:15:18 INFO tool.CodeGenTool: Beginning code generation
17/02/17 15:15:18 INFO manager.OracleManager: Time zone has been set to GMT
17/02/17 15:15:18 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM "DEFECT" t WHERE 1=0
17/02/17 15:15:18 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce
Note: /tmp/sqoop-root/compile/72422bf2a67c745893ae440ad77e3049/DEFECT.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
17/02/17 15:15:20 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-root/compile/72422bf2a67c745893ae440ad77e3049/DEFECT.jar
17/02/17 15:15:20 INFO manager.OracleManager: Time zone has been set to GMT
17/02/17 15:15:20 INFO manager.OracleManager: Time zone has been set to GMT
17/02/17 15:15:20 INFO mapreduce.ImportJobBase: Beginning import of DEFECT
17/02/17 15:15:20 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
17/02/17 15:15:20 INFO manager.OracleManager: Time zone has been set to GMT
17/02/17 15:15:21 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
17/02/17 15:15:21 INFO client.RMProxy: Connecting to ResourceManager at vn1.localdomain/10.35.10.17:8032
17/02/17 15:15:23 INFO db.DBInputFormat: Using read commited transaction isolation
17/02/17 15:15:23 INFO db.DataDrivenDBInputFormat: BoundingValsQuery: SELECT MIN("DEFECT_INDEX"), MAX("DEFECT_INDEX") FROM "DEFECT"
17/02/17 15:15:45 INFO mapreduce.JobSubmitter: number of splits:4
17/02/17 15:15:45 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1487360998088_0003
17/02/17 15:15:45 INFO impl.YarnClientImpl: Submitted application application_1487360998088_0003
17/02/17 15:15:45 INFO mapreduce.Job: The url to track the job: http://vn1.localdomain:8088/proxy/application_1487360998088_0003/
17/02/17 15:15:45 INFO mapreduce.Job: Running job: job_1487360998088_0003
17/02/17 15:15:51 INFO mapreduce.Job: Job job_1487360998088_0003 running in uber mode : false
17/02/17 15:15:51 INFO mapreduce.Job: map 0% reduce 0%
17/02/17 15:15:57 INFO mapreduce.Job: map 50% reduce 0%
17/02/17 15:16:35 INFO mapreduce.Job: map 75% reduce 0%

然后,它卡在了75%的位置,并且可以永远运行。我注意到4个工作中有3个很快完成了。除了以下之一:
enter image description here

似乎这项工作没有取得任何进展,只是停留在0%。我检查了系统日志:
2017-02-17 15:15:53,795 INFO [main] org.apache.hadoop.metrics2.impl.MetricsConfig: loaded properties from hadoop-metrics2.properties
2017-02-17 15:15:53,851 INFO [main] org.apache.hadoop.metrics2.impl.MetricsSystemImpl: Scheduled snapshot period at 10 second(s).
2017-02-17 15:15:53,851 INFO [main] org.apache.hadoop.metrics2.impl.MetricsSystemImpl: MapTask metrics system started
2017-02-17 15:15:53,859 INFO [main] org.apache.hadoop.mapred.YarnChild: Executing with tokens:
2017-02-17 15:15:53,859 INFO [main] org.apache.hadoop.mapred.YarnChild: Kind: mapreduce.job, Service: job_1487360998088_0003, Ident: (org.apache.hadoop.mapreduce.security.token.JobTokenIdentifier@41480ec1)
2017-02-17 15:15:53,948 INFO [main] org.apache.hadoop.mapred.YarnChild: Sleeping for 0ms before retrying again. Got null now.
2017-02-17 15:15:54,426 INFO [main] org.apache.hadoop.mapred.YarnChild: mapreduce.cluster.local.dir for child: /yarn/nm/usercache/root/appcache/application_1487360998088_0003
2017-02-17 15:15:55,409 INFO [main] org.apache.hadoop.conf.Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
2017-02-17 15:15:55,813 INFO [main] org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter: File Output Committer Algorithm version is 1
2017-02-17 15:15:55,822 INFO [main] org.apache.hadoop.mapred.Task: Using ResourceCalculatorProcessTree : [ ]
2017-02-17 15:15:56,278 INFO [main] org.apache.sqoop.mapreduce.db.DBInputFormat: Using read commited transaction isolation
2017-02-17 15:15:56,411 INFO [main] org.apache.hadoop.mapred.MapTask: Processing split: "DEFECT_INDEX" >= 1 AND "DEFECT_INDEX" < 545225318
2017-02-17 15:15:56,491 INFO [main] org.apache.sqoop.mapreduce.db.OracleDBRecordReader: Time zone has been set to GMT
2017-02-17 15:15:56,564 INFO [main] org.apache.sqoop.mapreduce.db.DBRecordReader: Working on split: "DEFECT_INDEX" >= 1 AND "DEFECT_INDEX" < 545225318
2017-02-17 15:15:56,610 INFO [main] org.apache.sqoop.mapreduce.db.DBRecordReader: Executing query: SELECT "DEFECT_INDEX", "LAYER_SCAN_INDEX", "DEFECT_SITE_ID", "CLUSTER_ID", "CARRY_OVER", "VERIFIED_ADDER", "REPEATING_DEFECT", "TEST_NUMBER", "X_DIE_COORDINATE", "Y_DIE_COORDINATE", "X_COORDINATE", "Y_COORDINATE", "X_DEFECT_SIZE", "Y_DEFECT_SIZE", "D_SIZE", "INSPECT_INTENSITY", "PATTERN_ID", "SURFACE", "ANGLE", "HOT_SPOT", "ASPECT_RATIO", "GRAY_SCALE", "MACROSIGID", "REGIONID", "SEMREVSAMPLE", "POLARITY", "DBGROUP", "CAREAREAGROUPCODE", "VENNID", "SEGMENTID", "MDAT_OFFSET", "DESIGNFILEFLOORPLANID", "DBSCRITICALITYINDEX", "CELLSIZE", "PCI", "LINECOMPLEXITY", "DCIRANGE", "GDSX", "GDSY" FROM "DEFECT" WHERE ( "DEFECT_INDEX" >= 1 ) AND ( "DEFECT_INDEX" < 545225318 )

日志在开始执行查询时结束。我等了10个小时,仍然没有更新。这不应该是正确的,因为它并不大。

我在日志中没有发现任何错误。在此之前,我已经成功地将几个表从oracle导入到hive。所以我认为我的配置很好。

我试图将mapper设置为1到100,但仍然无法正常工作。而且我注意到PK从1到某个数字开始的任务总是显示0%的进度,而其他工作正常。

我在寻找任何建议或帮助。谢谢。

最佳答案

默认情况下,sqoop根据表的PK将您的工作分配到4个映射器中,但是根据数据的分布,效率可能非常低。您没有谈论集群或数据的大小,但我会建议您查看数据的分布情况,并尝试使用其他列设置更多的 map (-m选项)来拆分负载(拆分选项) )。您的工作正在使用fault_index列拆分工作

关于oracle - 从Oracle将数据导入Hive时Sqoop作业卡住了,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42306865/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com