gpt4 book ai didi

python - 生成位于圆内的网格坐标

转载 作者:行者123 更新时间:2023-12-02 20:57:00 24 4
gpt4 key购买 nike

我找到了this answer ,这似乎与这个问题有些相关,但我想知道是否可以一一生成坐标,而不会因将每个点与圆的半径进行比较而产生额外的约 22% (1 - pi/4) 损失(通过计算圆心与该点之间的距离)。

到目前为止,我在 Python 中有以下函数。我通过Gauss' circle problem知道我最终将得到的坐标数量,但我也想一一生成这些点。

from typing import Iterable
from math import sqrt, floor

def circCoord(sigma: float =1.0, centroid: tuple =(0, 0)) -> Iterable[tuple]:
r""" Generate all coords within $3\vec{\sigma}$ of the centroid """

# The number of least iterations is given by Gauss' circle problem:
# http://mathworld.wolfram.com/GausssCircleProblem.html

maxiterations = 1 + 4 * floor(3 * sigma) + 4 * sum(\
floor(sqrt(9 * sigma**2 - i**2)) for i in range(1, floor(3 * sigma) + 1)
)

for it in range(maxiterations):
# `yield` points in image about `centroid` over which we loop

我想做的是仅迭代位于像素 3 * sigma 范围内的像素(位于上述函数中的 centroid 处)。


我编写了以下示例脚本,证明下面的解决方案是准确的。

#! /usr/bin/env python3
# -*- coding: utf-8 -*-


import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
import numpy as np
import argparse
from typing import List, Tuple
from math import sqrt


def collect(x: int, y: int, sigma: float =3.0) -> List[Tuple[int, int]]:
""" create a small collection of points in a neighborhood of some point
"""
neighborhood = []

X = int(sigma)
for i in range(-X, X + 1):
Y = int(pow(sigma * sigma - i * i, 1/2))
for j in range(-Y, Y + 1):
neighborhood.append((x + i, y + j))

return neighborhood


def plotter(sigma: float =3.0) -> None:
""" Plot a binary image """
arr = np.zeros([sigma * 2 + 1] * 2)

points = collect(int(sigma), int(sigma), sigma)

# flip pixel value if it lies inside (or on) the circle
for p in points:
arr[p] = 1

# plot ellipse on top of boxes to show their centroids lie inside
circ = Ellipse(\
xy=(int(sigma), int(sigma)),
width=2 * sigma,
height=2 * sigma,
angle=0.0
)

fig = plt.figure(0)
ax = fig.add_subplot(111, aspect='equal')
ax.add_artist(circ)
circ.set_clip_box(ax.bbox)
circ.set_alpha(0.2)
circ.set_facecolor((1, 1, 1))
ax.set_xlim(-0.5, 2 * sigma + 0.5)
ax.set_ylim(-0.5, 2 * sigma + 0.5)

plt.scatter(*zip(*points), marker='.', color='white')

# now plot the array that's been created
plt.imshow(-arr, interpolation='none', cmap='gray')
#plt.colorbar()

plt.show()


if __name__ == '__main__':
parser = argparse.ArgumentParser()

parser.add_argument('-s', '--sigma', type=int, \
help='Circle about which to collect points'
)

args = parser.parse_args()

plotter(args.sigma)

以及输出

./circleCheck.py -s 4

是:

enter image description here

最佳答案

像这样的简单的东西(对于原点的圆)怎么样?

X = int(R) # R is the radius
for x in range(-X,X+1):
Y = int((R*R-x*x)**0.5) # bound for y given x
for y in range(-Y,Y+1):
yield (x,y)

当圆的中心不在原点时,这可以很容易地适应一般情况。

关于python - 生成位于圆内的网格坐标,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39862709/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com