gpt4 book ai didi

python - 是否可以使用并发.futures 在事件发生后执行 tkinter 类内的函数/方法?如果是,怎么办?

转载 作者:行者123 更新时间:2023-12-02 20:51:47 28 4
gpt4 key购买 nike

我正在尝试使用 concurrent.futures.ProcessPoolExecutor 提供的工作池来加快 tkinter 类内方法的性能。这是因为执行该方法是 CPU 密集型的,并且“并行化”它应该缩短完成它的时间。我希望根据控件(相同方法的串行执行)对其性能进行基准测试。我编写了一个 tkinter GUI 测试代码来执行此基准测试。该方法的串行执行有效,但并发部分不起作用。感谢任何帮助我的代码的并发部分正常工作的帮助。

更新:我已确保已正确实现concurrent.futures.ProcessPoolExecutor来解决Tk()之外的问题,即从标准python3脚本解决问题。对此有解释answer 。现在我想实现该答案中描述的并发方法,以使用 tkinter.Tk() GUI 中的按钮。

下面给出了我的测试代码。当你运行它时,会出现一个 GUI。当您点击“FIND”按钮时,_findmatch 函数将以串行并发的方式执行,查找数字 5 在 0 到 1E8 的数字范围内出现了多少次。串行部分有效,但并发部分正在提示(见下文)。 有人知道如何解决这个 Pickling 错误吗?

Traceback (most recent call last):
File "/usr/lib/python3.5/multiprocessing/queues.py", line 241, in _feed
obj = ForkingPickler.dumps(obj)
File "/usr/lib/python3.5/multiprocessing/reduction.py", line 50, in dumps
cls(buf, protocol).dump(obj)
_pickle.PicklingError: Can't pickle <class '_tkinter.tkapp'>: attribute lookup tkapp on _tkinter failed

测试代码:

#!/usr/bin/python3
# -*- coding: utf-8 -*-

import tkinter as tk # Python 3 tkinter modules
import tkinter.ttk as ttk
import concurrent.futures as cf
from time import time, sleep
from itertools import repeat, chain

class App(ttk.Frame):
def __init__(self, parent):
# Initialise App Frame
ttk.Frame.__init__(self, parent, style='App.TFrame')
self.parent=parent

self.button = ttk.Button(self, style='start.TButton', text = 'FIND',
command=self._check)
self.label0 = ttk.Label(self, foreground='blue')
self.label1 = ttk.Label(self, foreground='red')
self.label2 = ttk.Label(self, foreground='green')
self._labels()
self.button.grid(row=0, column=1, rowspan=3, sticky='nsew')
self.label0.grid(row=0, column=0, sticky='nsew')
self.label1.grid(row=1, column=0, sticky='nsew')
self.label2.grid(row=2, column=0, sticky='nsew')

def _labels(self):
self.label0.configure(text='Click "FIND" to see how many times the number 5 appears.')
self.label1.configure(text='Serial Method:')
self.label2.configure(text='Concurrent Method:')

def _check(self):
# Initialisation
self._labels()
nmax = int(1E7)
smatch=[]
cmatch=[]
number = '5'
self.label0.configure(
text='Finding the number of times {0} appears in 0 to {1}'.format(
number, nmax))
self.parent.update_idletasks()

# Run serial code
start = time()
smatch = self._findmatch(0, nmax, number)
end = time() - start
self.label1.configure(
text='Serial: Found {0} occurances, Time to Find: {1:.6f}sec'.format(
len(smatch), end))

# Run serial code concurrently with concurrent.futures
workers = 6 # Pool of workers
chunks_vs_workers = 30 # A factor of =>14 can provide optimum performance
num_of_chunks = chunks_vs_workers * workers
start = time()
cmatch = self._concurrent_map(nmax, number, workers, num_of_chunks)
end = time() - start
self.label2.configure(
text='Concurrent: Found {0} occurances, Time to Find: {1:.6f}sec'.format(
len(cmatch), end))

def _findmatch(self, nmin, nmax, number):
'''Function to find the occurence of number in range nmin to nmax and return
the found occurences in a list.'''
start = time()
match=[]
for n in range(nmin, nmax):
if number in str(n): match.append(n)
end = time() - start
#print("\n def _findmatch {0:<10} {1:<10} {2:<3} found {3:8} in {4:.4f}sec".
# format(nmin, nmax, number, len(match),end))
return match

def _concurrent_map(self, nmax, number, workers, num_of_chunks):
'''Function that utilises concurrent.futures.ProcessPoolExecutor.map to
find the occurrences of a given number in a number range in a concurrent
manner.'''
# 1. Local variables
start = time()
chunksize = nmax // num_of_chunks
#2. Parallelization
with cf.ProcessPoolExecutor(max_workers=workers) as executor:
# 2.1. Discretise workload and submit to worker pool
cstart = (chunksize * i for i in range(num_of_chunks))
cstop = (chunksize * i if i != num_of_chunks else nmax
for i in range(1, num_of_chunks + 1))
futures = executor.map(self._findmatch, cstart, cstop, repeat(number))
end = time() - start
print('\n within statement of def _concurrent_map(nmax, number, workers, num_of_chunks):')
print("found in {0:.4f}sec".format(end))
return list(chain.from_iterable(futures))


if __name__ == '__main__':
root = tk.Tk()
root.title('App'), root.geometry('550x60')
app = App(root)
app.grid(row=0, column=0, sticky='nsew')

root.rowconfigure(0, weight=1)
root.columnconfigure(0, weight=1)
app.columnconfigure(0, weight=1)

app.mainloop()

最佳答案

我终于找到了回答我问题的方法。

Mark Summerfields 的书《Python 实践》(2014) 提到 multiprocessing模块,由 concurrent.futures.ProcessPoolExecutor 调用,只能调用可导入的函数并使用可pickle的模块数据(由函数调用)。因此,concurrent.futures.ProcessPoolExecutor 是必要的。并且它调用的函数(及其参数)要在与 tkinter GUI 模块不同的单独模块中找到,否则它将无法工作。

因此,我创建了一个单独的类来托管与 concurrent.futures.ProcessPoolExecutor 相关的所有代码。以及它调用的函数和数据,而不是像我之前那样将它们放在类应用程序中,即我的 tkinter.Tk() GUI 类中。成功了!

我还设法使用threading.Threads并发执行我的串行和并发任务。

我在下面分享我修改后的测试代码来演示我是如何做到的,并希望这可以帮助任何尝试使用 concurrent.futures 的人。与 tkinter。

看到所有 CPU 都通过 Tk GUI 加速运行真是太棒了。 :)

修改后的测试代码:

#!/usr/bin/python3
# -*- coding: utf-8 -*-
''' Code to demonstrate how to use concurrent.futures.Executor object with tkinter.'''

import tkinter as tk # Python 3 tkinter modules
import tkinter.ttk as ttk
import concurrent.futures as cf
import threading
from time import time, sleep
from itertools import chain


class App(ttk.Frame):
def __init__(self, parent):
# Initialise App Frame
ttk.Frame.__init__(self, parent)
self.parent=parent

self.button = ttk.Button(self, text = 'FIND', command=self._check)
self.label0 = ttk.Label(self, foreground='blue')
self.label1 = ttk.Label(self, foreground='red')
self.label2 = ttk.Label(self, foreground='green')
self._labels()
self.button.grid(row=0, column=1, rowspan=3, sticky='nsew')
self.label0.grid(row=0, column=0, sticky='nsew')
self.label1.grid(row=1, column=0, sticky='nsew')
self.label2.grid(row=2, column=0, sticky='nsew')

def _labels(self):
self.label0.configure(text='Click "FIND" to see how many times the number 5 appears.')
self.label1.configure(text='Serial Method:')
self.label2.configure(text='Concurrent Method:')

def _check(self):
# Initialisation
self._labels()
nmax = int(1E8)
workers = 6 # Pool of workers
chunks_vs_workers = 30 # A factor of =>14 can provide optimum performance
num_of_chunks = chunks_vs_workers * workers
number = '5'
self.label0.configure(
text='Finding the number of times {0} appears in 0 to {1}'.format(
number, nmax))
self.parent.update_idletasks()
# Concurrent management of serial and concurrent tasks using threading
self.serworker = threading.Thread(target=self._serial,
args=(0, nmax, number))
self.subworker = threading.Thread(target=self._concurrent,
args=(nmax, number, workers,
num_of_chunks))
self.serworker.start()
self.subworker.start()

def _serial(self, nmin, nmax, number):
fm = Findmatch
# Run serial code
start = time()
smatch = fm._findmatch(fm, 0, nmax, number)
end = time() - start
self.label1.configure(
text='Serial Method: {0} occurrences, Compute Time: {1:.6f}sec'.format(
len(smatch), end))
self.parent.update_idletasks()
#print('smatch = ', smatch)

def _concurrent(self, nmax, number, workers, num_of_chunks):
fm = Findmatch
# Run serial code concurrently with concurrent.futures .submit()
start = time()
cmatch = fm._concurrent_submit(fm, nmax, number, workers,
num_of_chunks)
end = time() - start
self.label2.configure(
text='Concurrent Method: {0} occurrences, Compute Time: {1:.6f}sec'.format(
len(cmatch), end))
self.parent.update_idletasks()
#print('cmatch = ', cmatch)


class Findmatch:
''' A class specially created to host concurrent.futures.ProcessPoolExecutor
so that the function(s) it calls can be accessible by multiprocessing
module. Multiprocessing requirements: codes must be importable and code
data must be pickerable. ref. Python in Practice, by Mark Summerfields,
section 4.3.2, pg 173, 2014'''
def __init__(self):
self.__init__(self)

def _findmatch(self, nmin, nmax, number):
'''Function to find the occurence of number in range nmin to nmax and return
the found occurences in a list.'''
start = time()
match=[]
for n in range(nmin, nmax):
if number in str(n): match.append(n)
end = time() - start
#print("\n def _findmatch {0:<10} {1:<10} {2:<3} found {3:8} in {4:.4f}sec".
# format(nmin, nmax, number, len(match),end))
return match

def _concurrent_submit(self, nmax, number, workers, num_of_chunks):
'''Function that utilises concurrent.futures.ProcessPoolExecutor.submit to
find the occurrences of a given number in a number range in a concurrent
manner.'''
# 1. Local variables
start = time()
chunksize = nmax // num_of_chunks
self.futures = []
#2. Parallelization
with cf.ProcessPoolExecutor(max_workers=workers) as executor:
# 2.1. Discretise workload and submit to worker pool
for i in range(num_of_chunks):
cstart = chunksize * i
cstop = chunksize * (i + 1) if i != num_of_chunks - 1 else nmax
self.futures.append(executor.submit(
self._findmatch, self, cstart, cstop, number))
end = time() - start
print('\n within statement of def _concurrent_submit(nmax, number, workers, num_of_chunks):')
print("found in {0:.4f}sec".format(end))
return list(chain.from_iterable(f.result() for f in cf.as_completed(
self.futures)))


if __name__ == '__main__':
root = tk.Tk()
root.title('App'), root.geometry('550x60')
app = App(root)
app.grid(row=0, column=0, sticky='nsew')

root.rowconfigure(0, weight=1)
root.columnconfigure(0, weight=1)
app.columnconfigure(0, weight=1)

app.mainloop()

关于python - 是否可以使用并发.futures 在事件发生后执行 tkinter 类内的函数/方法?如果是,怎么办?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41989813/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com