- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我需要通过http和JSON在多个服务器到服务器的通信中发送一些巨大的矩阵(全是0)。
我正在 Python 3.x 中使用 numpy 和 scipy。
有没有标准的工具来做到这一点?
我想我可以发送索引,并以某种方式在第二个服务器中重建矩阵以获得完整的矩阵,但我想避免使用自定义代码来重新发明轮子。
提前谢谢您。
最佳答案
最简单的方法就是 pickling ,但是专用函数可能更高效!
这里有一些使用 python3 和 scipy 专用的演示 save_npz函数(默认使用压缩),用 BytesIO 包裹(不使用文件;在内存中进行)。
我没有接触 JSON 部分,但这看起来微不足道(因为我们在这里准备了一个字符串),特别是对于从事网络工作的人来说。
代码:
import io
import scipy.sparse as sp
mat = sp.random(100, 100, density=0.001)
print(mat)
# mat to serialized-string
tmp = io.BytesIO()
sp.save_npz(tmp, mat)
tmp.seek(0) # back to start
str_ = tmp.read()
print(str_)
# serialized-string to mat
tmp_ = io.BytesIO(str_)
mat_loaded = sp.load_npz(tmp_)
print(mat_loaded)
输出:
(59, 11) 0.137877385333
(7, 36) 0.137729960685
(94, 14) 0.0951372931412
(3, 80) 0.235640993271
(56, 54) 0.504472012678
(8, 14) 0.657124520803
(22, 92) 0.951629612278
(81, 18) 0.733232743418
(39, 16) 0.228000113182
(17, 15) 0.127198226805
b'PK\x03\x04\x14\x00\x00\x00\x08\x00\xd5}gK\xc9\xb8\xd0xH\x00\x00\x00\\\x00\x00\x00\n\x00\x00\x00format.npy\x9b\xec\x17\xea\x1b\x10\xc9\xc8\xe0\xc6P\xad\x9e\x92Z\x9c\\\xa4n\xa5\xa0n\x13j\xac\xae\xa3\xa0\x9e\x96_TR\x94\x98\x17\x9f_\x94\x92\n\x12wK\xcc)N\x05\x8a\x17g$\x16\xa4\x02\xf9\x1a\x9a:\n\xb5\n(\x80+\x99\x81\x81!\x1f\x8a\x01PK\x03\x04\x14\x00\x00\x00\x08\x00\xd5}gKR\xab(\x82I\x00\x00\x00X\x00\x00\x00\t\x00\x00\x00shape.npy\x9b\xec\x17\xea\x1b\x10\xc9\xc8\xe0\xc6P\xad\x9e\x92Z\x9c\\\xa4n\xa5\xa0n\x93i\xa2\xae\xa3\xa0\x9e\x96_TR\x94\x98\x17\x9f_\x94\x92\n\x12wK\xcc)N\x05\x8a\x17g$\x16\xa4\x02\xf9\x1aF:\x9a:\n\xb5\nH\x80+\x85\x81\x81\x01\x84\x01PK\x03\x04\x14\x00\x00\x00\x08\x00\xd5}gKy\xea\xf44\x99\x00\x00\x00\xa0\x00\x00\x00\x08\x00\x00\x00data.npy\x9b\xec\x17\xea\x1b\x10\xc9\xc8\xe0\xc6P\xad\x9e\x92Z\x9c\\\xa4n\xa5\xa0n\x93f\xa1\xae\xa3\xa0\x9e\x96_TR\x94\x98\x17\x9f_\x94\x92\n\x12wK\xcc)N\x05\x8a\x17g$\x16\xa4\x02\xf9\x1a\x86\x06:\x9a:\n\xb5\n\x08\xc0%\xb3,/\xec\xfb\xd2\x83\xf6%/2\x96)-<h\xefp\x7f\xf5\xabWQ;\xec\x0f\x88\xdc|]\xady\xce\xbe)\xb2\xadv\x91\xca\x03\xfb\x97\x8f\x8f3h\xb1?\xb5?\xdat\xe5\xe3\xfe\xe2w\xf6\xe5\x87W5/){n/\xc1|v\x92\xb4\xfeY{\tY9\x01\x0e\x8f\x03\xf6\x00PK\x03\x04\x14\x00\x00\x00\x08\x00\xd5}gK\x96\xb0\xb4\xa3]\x00\x00\x00x\x00\x00\x00\x07\x00\x00\x00col.npy\x9b\xec\x17\xea\x1b\x10\xc9\xc8\xe0\xc6P\xad\x9e\x92Z\x9c\\\xa4n\xa5\xa0n\x93i\xa2\xae\xa3\xa0\x9e\x96_TR\x94\x98\x17\x9f_\x94\x92\n\x12wK\xcc)N\x05\x8a\x17g$\x16\xa4\x02\xf9\x1a\x86\x06:\x9a:\n\xb5\n\x08\xc0\xc5\xcd\xc0\xc0\xa0\x02\xc4|@\x1c\x00\xc4fPv\x0c\x10\x0b\x01\xb1\x00\x10\xf3\x031\x00PK\x03\x04\x14\x00\x00\x00\x08\x00\xd5}gK\r\xef\xd0@_\x00\x00\x00x\x00\x00\x00\x07\x00\x00\x00row.npy\x9b\xec\x17\xea\x1b\x10\xc9\xc8\xe0\xc6P\xad\x9e\x92Z\x9c\\\xa4n\xa5\xa0n\x93i\xa2\xae\xa3\xa0\x9e\x96_TR\x94\x98\x17\x9f_\x94\x92\n\x12wK\xcc)N\x05\x8a\x17g$\x16\xa4\x02\xf9\x1a\x86\x06:\x9a:\n\xb5\n\x08\xc0e\xcd\xc0\xc0\xc0\x0e\xc4q@\xcc\x0c\xc4\x16@\xcc\x01\xc4b@\x1c\x08\xc4\xea@,\x08\xc4\x00PK\x01\x02\x14\x00\x14\x00\x00\x00\x08\x00\xd5}gK\xc9\xb8\xd0xH\x00\x00\x00\\\x00\x00\x00\n\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb6\x81\x00\x00\x00\x00format.npyPK\x01\x02\x14\x00\x14\x00\x00\x00\x08\x00\xd5}gKR\xab(\x82I\x00\x00\x00X\x00\x00\x00\t\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb6\x81p\x00\x00\x00shape.npyPK\x01\x02\x14\x00\x14\x00\x00\x00\x08\x00\xd5}gKy\xea\xf44\x99\x00\x00\x00\xa0\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb6\x81\xe0\x00\x00\x00data.npyPK\x01\x02\x14\x00\x14\x00\x00\x00\x08\x00\xd5}gK\x96\xb0\xb4\xa3]\x00\x00\x00x\x00\x00\x00\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb6\x81\x9f\x01\x00\x00col.npyPK\x01\x02\x14\x00\x14\x00\x00\x00\x08\x00\xd5}gK\r\xef\xd0@_\x00\x00\x00x\x00\x00\x00\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb6\x81!\x02\x00\x00row.npyPK\x05\x06\x00\x00\x00\x00\x05\x00\x05\x00\x0f\x01\x00\x00\xa5\x02\x00\x00\x00\x00'
(59, 11) 0.137877385333
(7, 36) 0.137729960685
(94, 14) 0.0951372931412
(3, 80) 0.235640993271
(56, 54) 0.504472012678
(8, 14) 0.657124520803
(22, 92) 0.951629612278
(81, 18) 0.733232743418
(39, 16) 0.228000113182
(17, 15) 0.127198226805
关于python - 通过 API 请求高效发送稀疏矩阵 numpy,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47159199/
我在服务器上 checkout 了一个 git 存储库。该存储库过去在根目录下包含所有相关文件,但我必须进行一些更改,现在我有两个文件夹,src 和 dist,我想跟踪这两个文件夹. 我遇到的问题是,
我很难弄清楚 VkDescriptorSetLayoutBinding::binding 的任何用例,这是结构: struct VkDescriptorSetLayoutBinding { u
Python中能否有效获取稀疏向量的范数? 我尝试了以下方法: from scipy import sparse from numpy.linalg import norm vector1 = spa
我正在尝试找出为什么这段代码不对数组进行排序... 任意向量。 x = array([[3, 2, 4, 5, 7, 4, 3, 4, 3, 3, 1, 4, 6, 3, 2, 4, 3, 2]])
有谁知道如何压缩(编码)稀疏 vector ?稀疏 vector 表示有许多“0”的 1xN 矩阵。 例如 10000000000001110000000000000000100000000 上面是稀
我使用稀疏高斯过程进行 Rasmussen 回归。[http://www.tsc.uc3m.es/~miguel/downloads.php][1] 预测平均值的语法是: [~, mu_1, ~, ~
我在朴素贝叶斯分类器中使用 Mahout API。其中一个功能是 SparseVectorsFromSequenceFiles虽然我已经尝试过旧的谷歌搜索,但我仍然不明白什么是稀疏 vector 。最
我正在尝试将JavaScript稀疏数组映射到C#表示形式。 建议这样做的方法是什么? 它正在考虑使用一个字典,该字典包含在原始数组中包含值的原始词列表。 还有其他想法吗? 谢谢! 最佳答案 注意 针
如果我想求解一个完整上三角系统,我可以调用linsolve(A,b,'UT')。然而,这目前不支持稀疏矩阵。我该如何克服这个问题? 最佳答案 UT 和 LT 系统是最容易解决的系统之一。读一读on t
我有一个带有 MultiIndex 的 Pandas DataFrame。 MultiIndex 的值在 (0,0) 到 (1000,1000) 范围内,该列有两个字段 p 和 q. 但是,DataF
我目前正在实现一个小型有限元模拟。使用 Python/Numpy,我正在寻找一种有效的方法来创建全局刚度矩阵: 1)我认为应该使用coo_matrix()从较小的单元刚度矩阵创建稀疏矩阵。但是,我可以
a , b是 1D numpy ndarray与整数数据类型具有相同的大小。 C是一个 2D scipy.sparse.lil_matrix . 如果索引[a, b]包含重复索引,C[a, b] +=
我有一个大的、连通的、稀疏的邻接表形式的图。我想找到两个尽可能远的顶点,即 diameter of the graph以及实现它的两个顶点。 对于不同的应用程序,我对无向和有向情况下的这个问题都很感兴
上下文:我将 Eigen 用于人工神经网络,其中典型维度为每层约 1000 个节点。所以大部分操作是将大小为 ~(1000,1000) 的矩阵 M 与大小为 1000 的 vector 或一批 B v
我有一些大小合适的矩阵 (2000*2000),我希望在矩阵的元素中有符号表达式 - 即 .9**b + .8**b + .7**b ... 是一个元素的例子。矩阵非常稀疏。 我通过添加中间计算来创建
在 R 或 C++ 中是否有一种快速填充(稀疏)矩阵的方法: A, B, 0, 0, 0 C, A, B, 0, 0 0, C, A, B, 0 0, 0, C, A, B 0, 0, 0, C, A
我有一个大的稀疏 numpy/scipy 矩阵,其中每一行对应于高维空间中的一个点。我想进行以下类型的查询: 给定一个点P(矩阵中的一行)和一个距离epsilon,找到与epsilon距离最大的所有点
假设我有一个 scipy.sparse.csr_matrix 代表下面的值 [[0 0 1 2 0 3 0 4] [1 0 0 2 0 3 4 0]] 我想就地计算非零值的累积和,这会将数组更改为:
我了解如何在 Git 中配置稀疏 checkout ,但我想知道是否可以消除前导目录。例如,假设我有一个 Git 存储库,其文件夹结构如下: 文件夹1/foo 文件夹2/foo/bar/stuff 文
根据 this thread , Git 中的排除 sparse-checkout feature应该实现。是吗? 假设我有以下结构: papers/ papers/... presentations
我是一名优秀的程序员,十分优秀!