- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个由 1096 个数字组成的向量,即测量站 3 年来测量的 NOx 日平均浓度。您可以观察图像中的分布类型:
我使用这些命令来制作直方图:
NOxV<-scan("NOx_Vt15-17.txt")
hist.NOxVt<-hist(NOxV, plot = FALSE, breaks = 24)
plot(hist.NOxVt, xlab = "[NOx]", ylab = "Frequenze assolute", main = "Istogramma freq. ass. NOx 15-17 Viterbo")
points(hist.NOxVt$mids, hist.NOxVt$counts, col= "red")
我的教授建议我用泊松分布拟合直方图 - 注意转变:离散 -> 连续(我不知道这意味着什么) - 或用“对数正态”分布。
我尝试使用她在类(class)中给我们的一些命令行进行泊松拟合,但在执行以下最后一行代码后,R 给了我一个错误:
my_poisson = function(params, x){
exp(-params)*params^x/factorial(x)
}
y<-hist.NOxVt$counts/1096;
x<-hist.NOxVt$mids;
z <- nls( y ~ exp(-a)*a^x/factorial(x), start=list(a=1) )
Error in numericDeriv(form[[3L]], names(ind), env) : Missing value or an infinity produced when evaluating the model In addition: There were 50 or more warnings (use warnings() to see the first 50)"
在这个问题之后我无法解决(甚至在互联网上搜索类似的问题)我决定用对数正态拟合分布,但我不知道该怎么做,因为教授没有向我们解释,而且我仍然没有足够的 R 经验来自己解决这个问题。
如果有任何有关如何进行对数正态拟合和/或泊松拟合的建议或示例,我将不胜感激。
最佳答案
R 自带的 MASS
包中有一个内置函数 fitdistr
:
生成要查看的数据示例(观察参数以获取与您的图片类似的内容):
set.seed(101)
z <- rlnorm(1096,meanlog=4.5,sdlog=0.8)
拟合(基于统计,我不推荐泊松拟合 - 可能可以采用离散分布,例如泊松(或更好的负二项式)来拟合此类连续数据,但对数正态分布或 Gamma 分布是更自然的选择。
library(MASS)
f1 <- fitdistr(z,"lognormal")
f2 <- fitdistr(z,"Gamma")
f1
和 f2
对象在打印时给出估计系数(log 的 meanlog
和 sdlog
- Gamma 的正态、形状
和率
)以及系数的标准误差。
画一张图(在密度尺度上,而不是在计数尺度上):红色是对数正态分布,蓝色是 Gamma 分布(在这种情况下对数正态分布更合适,因为这就是我首先生成“数据”的方式) 。 [with(as.list(coef(...))
的东西是一些 R 的奇特东西,允许使用系数的名称 (meanlog
、sdlog
等)在后续的 R 代码中。]
hist(z,col="gray",breaks=50,freq=FALSE)
with(as.list(coef(f1)),
curve(dlnorm(x,meanlog,sdlog),
add=TRUE,col="red",lwd=2))
with(as.list(coef(f2)),
curve(dgamma(x,shape=shape,rate=rate),
add=TRUE,col="blue",lwd=2))
关于r - 拟合对数正态分布或泊松分布,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49219579/
gnuplot 中拟合函数的正确方法是什么 f(x)有下一个表格吗? f(x) = A*exp(x - B*f(x)) 我尝试使用以下方法将其拟合为任何其他函数: fit f(x) "data.txt
(1)首先要建立数据集 ? 1
测量显示一个信号,其形式类似于具有偏移量和因子的平方根函数。如何找到系数并在一个图中绘制原始数据和拟合曲线? require(ggplot2) require(nlmrt) # may be thi
我想将以下函数拟合到我的数据中: f(x) = Offset+Amplitudesin(FrequencyT+Phase), 或根据 Wikipedia : f(x) = C+alphasin(ome
我正在尝试使用与此工具相同的方法在 C# 中拟合 Akima 样条曲线:https://www.mycurvefit.com/share/4ab90a5f-af5e-435e-9ce4-652c95c
问题:开放层适合 map ,只有在添加特征之后(视觉),我该如何避免这种情况? 我在做这个 第 1 步 - 创建特征 var feature = new ol.Feature({...}); 第 2
我有一个数据变量,其中包含以下内容: [Object { score="2.8", word="Blue"}, Object { score="2.8", word="Red"}, Objec
我正在尝试用中等大小的 numpy float 组来填充森林 In [3]: data.shape Out[3]: (401125, 5) [...] forest = forest.fit(data
我想用洛伦兹函数拟合一些数据,但我发现当我使用不同数量级的参数时拟合会出现问题。 这是我的洛伦兹函数: function [ value ] = lorentz( x,x0,gamma,amp )
我有一些数据,我希望对其进行建模,以便能够在与数据相同的范围内获得相对准确的值。 为此,我使用 polyfit 来拟合 6 阶多项式,由于我的 x 轴值,它建议我将其居中并缩放以获得更准确的拟合。 但
我一直在寻找一种方法来使数据符合 beta 二项分布并估计 alpha 和 beta,类似于 VGAM 库中的 vglm 包的方式。我一直无法找到如何在 python 中执行此操作。有一个 scipy
我将 scipy.optimize.minimize ( https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html ) 函数与
在过去的几天里,我一直在尝试使用 python 绘制圆形数据,方法是构建一个范围从 0 到 2pi 的圆形直方图并拟合 Von Mises 分布。我真正想要实现的是: 具有拟合 Von-Mises 分
我有一个简单的循环,它在每次迭代中都会创建一个 LSTM(具有相同的参数)并将其拟合到相同的数据。问题是迭代过程中需要越来越多的时间。 batch_size = 10 optimizer = opti
我有一个 Python 系列,我想为其直方图拟合密度。问题:是否有一种巧妙的方法可以使用 np.histogram() 中的值来实现此结果? (请参阅下面的更新) 我目前的问题是,我执行的 kde 拟
我有一个简单的 keras 模型(正常套索线性模型),其中输入被移动到单个“神经元”Dense(1, kernel_regularizer=l1(fdr))(input_layer) 但是权重从这个模
我正在尝试解决 Boston Dataset 上的回归问题在random forest regressor的帮助下.我用的是GridSearchCV用于选择最佳超参数。 问题一 我是否应该将 Grid
使用以下函数,可以在输入点 P 上拟合三次样条: def plotCurve(P): pts = np.vstack([P, P[0]]) x, y = pts.T i = np.aran
我有 python 代码可以生成数字 x、y 和 z 的三元组列表。我想使用 scipy curve_fit 来拟合 z= f(x,y)。这是一些无效的代码 A = [(19,20,24), (10,
我正在尝试从 this answer 中复制代码,但是我在这样做时遇到了问题。我正在使用包 VGAM 中的gumbel 发行版和 fitdistrplus . 做的时候出现问题: fit = fi
我是一名优秀的程序员,十分优秀!