- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
因此,我正在运行一个Python脚本(由于某些安全原因,我无法共享),并且在运行该脚本时遇到了一些问题。我正在使用spark并且在使用groupbyKey()。mapvalues函数和sortbyKey()函数时遇到此错误。
我用谷歌搜索了这个错误,并尝试了Spark job fails: storage.DiskBlockObjectWriter: Uncaught exception while reverting partial writes to file和其他类似的答案。
这是完整的错误。
2019-07-26 09:35:20,698 ERROR storage.DiskBlockObjectWriter: Uncaught
exception while reverting partial writes to file /tmp/blockmgr-0b509bcc-
b1b3-4edb-993f-208ca6107f06/12/temp_shuffle_6569085f-65d9-46c3-9466-
a37d7fbc8caf
java.io.FileNotFoundException: /tmp/blockmgr-0b509bcc-b1b3-4edb-993f-
208ca6107f06/12/temp_shuffle_6569085f-65d9-46c3-9466-a37d7fbc8caf (Too
many open files)
at java.io.FileOutputStream.open0(Native Method)
at java.io.FileOutputStream.open(FileOutputStream.java:270)
at java.io.FileOutputStream.<init>(FileOutputStream.java:213)
at org.apache.spark.storage.DiskBlockObjectWriter$$anonfun$revertPartialWritesAndClose$2.apply$mcV$sp(DiskBlockObjectWriter.scala:217)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1369)
at org.apache.spark.storage.DiskBlockObjectWriter.revertPartialWritesAndClose(DiskBlockObjectWriter.scala:214)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.stop(BypassMergeSortShuffleWriter.java:237)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:105)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
2019-07-26 09:35:20,724 ERROR sort.BypassMergeSortShuffleWriter: Error while deleting file /tmp/blockmgr-0b509bcc-b1b3-4edb-993f-208ca6107f06/12/temp_shuffle_6569085f-65d9-46c3-9466-a37d7fbc8caf
2019-07-26 09:35:21,822 ERROR executor.Executor: Exception in task 53.0 in stage 1.0 (TID 152)
java.io.FileNotFoundException: /tmp/blockmgr-0b509bcc-b1b3-4edb-993f-208ca6107f06/3c/temp_shuffle_a4e5cecd-e130-4671-b0ba-36e98e2dc158 (Too many open files)
at java.io.FileOutputStream.open0(Native Method)
at java.io.FileOutputStream.open(FileOutputStream.java:270)
at java.io.FileOutputStream.<init>(FileOutputStream.java:213)
at org.apache.spark.storage.DiskBlockObjectWriter.initialize(DiskBlockObjectWriter.scala:103)
at org.apache.spark.storage.DiskBlockObjectWriter.open(DiskBlockObjectWriter.scala:116)
at org.apache.spark.storage.DiskBlockObjectWriter.write(DiskBlockObjectWriter.scala:237)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:151)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
2019-07-26 09:35:21,861 WARN scheduler.TaskSetManager: Lost task 53.0 in stage 1.0 (TID 152, localhost, executor driver): java.io.FileNotFoundException: /tmp/blockmgr-0b509bcc-b1b3-4edb-993f-208ca6107f06/3c/temp_shuffle_a4e5cecd-e130-4671-b0ba-36e98e2dc158 (Too many open files)
at java.io.FileOutputStream.open0(Native Method)
at java.io.FileOutputStream.open(FileOutputStream.java:270)
at java.io.FileOutputStream.<init>(FileOutputStream.java:213)
at org.apache.spark.storage.DiskBlockObjectWriter.initialize(DiskBlockObjectWriter.scala:103)
at org.apache.spark.storage.DiskBlockObjectWriter.open(DiskBlockObjectWriter.scala:116)
at org.apache.spark.storage.DiskBlockObjectWriter.write(DiskBlockObjectWriter.scala:237)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:151)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
2019-07-26 09:35:21,863 ERROR scheduler.TaskSetManager: Task 53 in stage 1.0 failed 1 times; aborting job
Traceback (most recent call last):
File "BowtieSpark.py", line 60, in <module>
readsRDD = reads_tuple.sortByKey().values()
File "/s1/snagaraj/spark/python/pyspark/rdd.py", line 667, in sortByKey
rddSize = self.count()
File "/s1/snagaraj/spark/python/pyspark/rdd.py", line 1055, in count
return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
File "/s1/snagaraj/spark/python/pyspark/rdd.py", line 1046, in sum
return self.mapPartitions(lambda x: [sum(x)]).fold(0, operator.add)
File "/s1/snagaraj/spark/python/pyspark/rdd.py", line 917, in fold
vals = self.mapPartitions(func).collect()
File "/s1/snagaraj/spark/python/pyspark/rdd.py", line 816, in collect
sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
File "/s1/snagaraj/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
File "/s1/snagaraj/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
2019-07-26 09:35:21,887 WARN scheduler.TaskSetManager: Lost task 56.0 in stage 1.0 (TID 155, localhost, executor driver): TaskKilled (Stage cancelled)
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 53 in stage 1.0 failed 1 times, most recent failure: Lost task 53.0 in stage 1.0 (TID 152, localhost, executor driver): java.io.FileNotFoundException: /tmp/blockmgr-0b509bcc-b1b3-4edb-993f-208ca6107f06/3c/temp_shuffle_a4e5cecd-e130-4671-b0ba-36e98e2dc158 (Too many open files)
at java.io.FileOutputStream.open0(Native Method)
at java.io.FileOutputStream.open(FileOutputStream.java:270)
at java.io.FileOutputStream.<init>(FileOutputStream.java:213)
at org.apache.spark.storage.DiskBlockObjectWriter.initialize(DiskBlockObjectWriter.scala:103)
at org.apache.spark.storage.DiskBlockObjectWriter.open(DiskBlockObjectWriter.scala:116)
at org.apache.spark.storage.DiskBlockObjectWriter.write(DiskBlockObjectWriter.scala:237)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:151)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
ERROR storage.DiskBlockObjectWriter: Uncaught exception while reverting partial writes to file /tmp/blockmgr-0b509bcc-b1b3-4edb-993f-208ca6107f06/0d/temp_shuffle_f170174d-3de0-44be-89a2-5d2b7f6ac3bf
)的错误消息。
ERROR sort.BypassMergeSortShuffleWriter: Error while deleting file /tmp/blockmgr-0b509bcc-b1b3-4edb-993f-208ca6107f06/0e/temp_shuffle_9f1b47df-71d1-4941-9da1-2f8bee09d968
)
最佳答案
根据日志,Filenotfound错误是由于执行器失败而引起的,而执行器由于Too many open files
而失败了。您可以使用ulimit -n 65636
命令增加打开的文件吗
关于apache-spark - 使用Spark运行python脚本时出错,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57227305/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!