gpt4 book ai didi

hadoop - map 阶段不读取中间结果

转载 作者:行者123 更新时间:2023-12-02 20:08:31 24 4
gpt4 key购买 nike

我有两个工作的mapreduce程序。第二份工作的关键和值(value)来自第一份工作的输出。但我认为第二张 map 无法获得第一份工作的结果。换句话说,我认为我的第二份工作没有阅读第一份工作的输出。我该怎么办?

这是代码:

public class dewpoint extends Configured implements Tool
{
private static final Logger logger = LoggerFactory.getLogger(dewpoint.class);

static final String KEYSPACE = "weather";
static final String COLUMN_FAMILY = "user";
private static final String OUTPUT_PATH1 = "/tmp/intermediate1";
private static final String OUTPUT_PATH2 = "/tmp/intermediate2";
private static final String OUTPUT_PATH3 = "/tmp/intermediate3";
private static final String INPUT_PATH1 = "/tmp/intermediate1";

public static void main(String[] args) throws Exception
{

ToolRunner.run(new Configuration(), new dewpoint(), args);
System.exit(0);
}

///////////////////////////////////////////////////////////

public static class dpmap1 extends Mapper<Map<String, ByteBuffer>, Map<FloatWritable, ByteBuffer>, Text, DoubleWritable>
{
DoubleWritable val1 = new DoubleWritable();
Text word = new Text();
String date;
float temp;
public void map(Map<String, ByteBuffer> keys, Map<FloatWritable, ByteBuffer> columns, Context context) throws IOException, InterruptedException
{

for (Entry<String, ByteBuffer> key : keys.entrySet())
{
//System.out.println(key.getKey());
if (!"date".equals(key.getKey()))
continue;
date = ByteBufferUtil.string(key.getValue());
word.set(date);
}


for (Entry<FloatWritable, ByteBuffer> column : columns.entrySet())
{
if (!"temprature".equals(column.getKey()))
continue;
temp = ByteBufferUtil.toFloat(column.getValue());
val1.set(temp);
//System.out.println(temp);
}
context.write(word, val1);
}
}

///////////////////////////////////////////////////////////

public static class dpred1 extends Reducer<Text, DoubleWritable, Text, DoubleWritable>
{
public void reduce(Text key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException
{
double beta = 17.62;
double landa = 243.12;
DoubleWritable result1 = new DoubleWritable();
DoubleWritable result2 = new DoubleWritable();
for (DoubleWritable val : values){
// System.out.println(val.get());
beta *= val.get();
landa+=val.get();
}
result1.set(beta);
result2.set(landa);

context.write(key, result1);
context.write(key, result2);
}
}
///////////////////////////////////////////////////////////

public static class dpmap2 extends Mapper <Text, DoubleWritable, Text, DoubleWritable>{

Text key2 = new Text();
double temp1, temp2 =0;

public void map(Text key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException {
String[] sp = values.toString().split("\t");
for (int i=0; i< sp.length; i+=4)
//key2.set(sp[i]);
System.out.println(sp[i]);
for(int j=1;j< sp.length; j+=4)
temp1 = Double.valueOf(sp[j]);
for (int k=3;k< sp.length; k+=4)
temp2 = Double.valueOf(sp[k]);
context.write(key2, new DoubleWritable(temp2/temp1));

}
}

///////////////////////////////////////////////////////////


public static class dpred2 extends Reducer<Text, DoubleWritable, Text, DoubleWritable>
{
public void reduce(Text key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException
{

double alpha = 6.112;
double tmp = 0;
DoubleWritable result3 = new DoubleWritable();
for (DoubleWritable val : values){
System.out.println(val.get());
tmp = alpha*(Math.pow(Math.E, val.get()));

}
result3.set(tmp);
context.write(key, result3);


}
}


///////////////////////////////////////////////////////////


public int run(String[] args) throws Exception
{

Job job1 = new Job(getConf(), "DewPoint");
job1.setJarByClass(dewpoint.class);
job1.setMapperClass(dpmap1.class);
job1.setOutputFormatClass(SequenceFileOutputFormat.class);
job1.setCombinerClass(dpred1.class);
job1.setReducerClass(dpred1.class);
job1.setMapOutputKeyClass(Text.class);
job1.setMapOutputValueClass(DoubleWritable.class);
job1.setOutputKeyClass(Text.class);
job1.setOutputValueClass(DoubleWritable.class);
FileOutputFormat.setOutputPath(job1, new Path(OUTPUT_PATH1));


job1.setInputFormatClass(CqlPagingInputFormat.class);

ConfigHelper.setInputRpcPort(job1.getConfiguration(), "9160");
ConfigHelper.setInputInitialAddress(job1.getConfiguration(), "localhost");
ConfigHelper.setInputColumnFamily(job1.getConfiguration(), KEYSPACE, COLUMN_FAMILY);
ConfigHelper.setInputPartitioner(job1.getConfiguration(), "Murmur3Partitioner");

CqlConfigHelper.setInputCQLPageRowSize(job1.getConfiguration(), "3");
job1.waitForCompletion(true);

/***************************************/

if (job1.isSuccessful()){
Job job2 = new Job(getConf(), "DewPoint");
job2.setJarByClass(dewpoint.class);
job2.setMapperClass(dpmap2.class);
job2.setCombinerClass(dpred2.class);
job2.setReducerClass(dpred2.class);
job2.setMapOutputKeyClass(Text.class);
job2.setMapOutputValueClass(DoubleWritable.class);
job2.setOutputKeyClass(Text.class);
job2.setOutputValueClass(DoubleWritable.class);
job2.setOutputFormatClass(TextOutputFormat.class);
job2.setInputFormatClass(SequenceFileInputFormat.class);
FileInputFormat.addInputPath(job2, new Path(OUTPUT_PATH1));
FileOutputFormat.setOutputPath(job2, new Path(OUTPUT_PATH2));
job2.waitForCompletion(true);
}
///////////////////////////////////////////////////

return 0;
}
}

例如,在我的第二个 map 阶段,当我执行System.out.println(key)时,它不打印任何内容,并且在reduce结果中,值是'infinity'...。

这是日志:
13/10/25 11:33:37 INFO util.NativeCodeLoader: Loaded the native-hadoop library
13/10/25 11:33:37 WARN mapred.JobClient: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
13/10/25 11:33:40 INFO mapred.JobClient: Running job: job_local1294015510_0001
13/10/25 11:33:41 INFO mapred.LocalJobRunner: Waiting for map tasks
13/10/25 11:33:41 INFO mapred.LocalJobRunner: Starting task: attempt_local1294015510_0001_m_000000_0
13/10/25 11:33:41 INFO util.ProcessTree: setsid exited with exit code 0
13/10/25 11:33:41 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@190a0d6
13/10/25 11:33:41 INFO mapred.MapTask: Processing split: ColumnFamilySplit((-9223372036854775808, '1684704676388456087] @[localhost])
13/10/25 11:33:41 INFO mapred.MapTask: io.sort.mb = 100
13/10/25 11:33:41 INFO mapred.JobClient: map 0% reduce 0%
13/10/25 11:33:43 INFO mapred.MapTask: data buffer = 79691776/99614720
13/10/25 11:33:43 INFO mapred.MapTask: record buffer = 262144/327680
13/10/25 11:33:44 INFO mapred.MapTask: Starting flush of map output
13/10/25 11:33:44 INFO mapred.MapTask: Finished spill 0
13/10/25 11:33:44 INFO mapred.Task: Task:attempt_local1294015510_0001_m_000000_0 is done. And is in the process of commiting
13/10/25 11:33:44 INFO mapred.LocalJobRunner:
13/10/25 11:33:44 INFO mapred.Task: Task 'attempt_local1294015510_0001_m_000000_0' done.
13/10/25 11:33:44 INFO mapred.LocalJobRunner: Finishing task: attempt_local1294015510_0001_m_000000_0
13/10/25 11:33:44 INFO mapred.LocalJobRunner: Starting task: attempt_local1294015510_0001_m_000001_0
13/10/25 11:33:44 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@9aba32
13/10/25 11:33:44 INFO mapred.MapTask: Processing split: ColumnFamilySplit((1684704676388456087, '-9223372036854775808] @[localhost])
13/10/25 11:33:44 INFO mapred.MapTask: io.sort.mb = 100
13/10/25 11:33:47 INFO mapred.JobClient: map 50% reduce 0%
13/10/25 11:33:47 INFO mapred.MapTask: data buffer = 79691776/99614720
13/10/25 11:33:47 INFO mapred.MapTask: record buffer = 262144/327680
13/10/25 11:33:47 INFO mapred.MapTask: Starting flush of map output
13/10/25 11:33:47 INFO mapred.MapTask: Finished spill 0
13/10/25 11:33:47 INFO mapred.Task: Task:attempt_local1294015510_0001_m_000001_0 is done. And is in the process of commiting
13/10/25 11:33:47 INFO mapred.LocalJobRunner:
13/10/25 11:33:47 INFO mapred.Task: Task 'attempt_local1294015510_0001_m_000001_0' done.
13/10/25 11:33:47 INFO mapred.LocalJobRunner: Finishing task: attempt_local1294015510_0001_m_000001_0
13/10/25 11:33:47 INFO mapred.LocalJobRunner: Map task executor complete.
13/10/25 11:33:48 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@17f11fb
13/10/25 11:33:48 INFO mapred.LocalJobRunner:
13/10/25 11:33:48 INFO mapred.Merger: Merging 2 sorted segments
13/10/25 11:33:48 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 204 bytes
13/10/25 11:33:48 INFO mapred.LocalJobRunner:
13/10/25 11:33:48 INFO mapred.Task: Task:attempt_local1294015510_0001_r_000000_0 is done. And is in the process of commiting
13/10/25 11:33:48 INFO mapred.LocalJobRunner:
13/10/25 11:33:48 INFO mapred.Task: Task attempt_local1294015510_0001_r_000000_0 is allowed to commit now
13/10/25 11:33:48 INFO output.FileOutputCommitter: Saved output of task 'attempt_local1294015510_0001_r_000000_0' to /tmp/intermediate1
13/10/25 11:33:48 INFO mapred.LocalJobRunner: reduce > reduce
13/10/25 11:33:48 INFO mapred.Task: Task 'attempt_local1294015510_0001_r_000000_0' done.
13/10/25 11:33:48 INFO mapred.JobClient: map 100% reduce 100%
13/10/25 11:33:48 INFO mapred.JobClient: Job complete: job_local1294015510_0001
13/10/25 11:33:48 INFO mapred.JobClient: Counters: 20
13/10/25 11:33:48 INFO mapred.JobClient: File Output Format Counters
13/10/25 11:33:48 INFO mapred.JobClient: Bytes Written=324
13/10/25 11:33:48 INFO mapred.JobClient: FileSystemCounters
13/10/25 11:33:48 INFO mapred.JobClient: FILE_BYTES_READ=1503
13/10/25 11:33:48 INFO mapred.JobClient: FILE_BYTES_WRITTEN=161938
13/10/25 11:33:48 INFO mapred.JobClient: File Input Format Counters
13/10/25 11:33:48 INFO mapred.JobClient: Bytes Read=0
13/10/25 11:33:48 INFO mapred.JobClient: Map-Reduce Framework
13/10/25 11:33:48 INFO mapred.JobClient: Map output materialized bytes=212
13/10/25 11:33:48 INFO mapred.JobClient: Map input records=8
13/10/25 11:33:48 INFO mapred.JobClient: Reduce shuffle bytes=0
13/10/25 11:33:48 INFO mapred.JobClient: Spilled Records=24
13/10/25 11:33:48 INFO mapred.JobClient: Map output bytes=120
13/10/25 11:33:48 INFO mapred.JobClient: Total committed heap usage (bytes)=485359616
13/10/25 11:33:48 INFO mapred.JobClient: CPU time spent (ms)=0
13/10/25 11:33:48 INFO mapred.JobClient: SPLIT_RAW_BYTES=208
13/10/25 11:33:48 INFO mapred.JobClient: Combine input records=8
13/10/25 11:33:48 INFO mapred.JobClient: Reduce input records=12
13/10/25 11:33:48 INFO mapred.JobClient: Reduce input groups=5
13/10/25 11:33:48 INFO mapred.JobClient: Combine output records=12
13/10/25 11:33:48 INFO mapred.JobClient: Physical memory (bytes) snapshot=0
13/10/25 11:33:48 INFO mapred.JobClient: Reduce output records=10
13/10/25 11:33:48 INFO mapred.JobClient: Virtual memory (bytes) snapshot=0
13/10/25 11:33:48 INFO mapred.JobClient: Map output records=8
13/10/25 11:33:49 WARN mapred.JobClient: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
13/10/25 11:33:49 INFO input.FileInputFormat: Total input paths to process : 1
13/10/25 11:33:49 INFO mapred.JobClient: Running job: job_local600426365_0002
13/10/25 11:33:49 INFO mapred.LocalJobRunner: Waiting for map tasks
13/10/25 11:33:49 INFO mapred.LocalJobRunner: Starting task: attempt_local600426365_0002_m_000000_0
13/10/25 11:33:49 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@18d30fb
13/10/25 11:33:49 INFO mapred.MapTask: Processing split: file:/tmp/intermediate1/part-r-00000:0+312
13/10/25 11:33:49 INFO mapred.MapTask: io.sort.mb = 100
13/10/25 11:33:50 INFO mapred.MapTask: data buffer = 79691776/99614720
13/10/25 11:33:50 INFO mapred.MapTask: record buffer = 262144/327680
13/10/25 11:33:50 INFO mapred.MapTask: Starting flush of map output
13/10/25 11:33:50 INFO mapred.MapTask: Finished spill 0
13/10/25 11:33:50 INFO mapred.Task: Task:attempt_local600426365_0002_m_000000_0 is done. And is in the process of commiting
13/10/25 11:33:50 INFO mapred.LocalJobRunner:
13/10/25 11:33:50 INFO mapred.Task: Task 'attempt_local600426365_0002_m_000000_0' done.
13/10/25 11:33:50 INFO mapred.LocalJobRunner: Finishing task: attempt_local600426365_0002_m_000000_0
13/10/25 11:33:50 INFO mapred.LocalJobRunner: Map task executor complete.
13/10/25 11:33:50 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@d75c47
13/10/25 11:33:50 INFO mapred.LocalJobRunner:
13/10/25 11:33:50 INFO mapred.Merger: Merging 1 sorted segments
13/10/25 11:33:50 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 84 bytes
13/10/25 11:33:50 INFO mapred.LocalJobRunner:
13/10/25 11:33:50 INFO mapred.Task: Task:attempt_local600426365_0002_r_000000_0 is done. And is in the process of commiting
13/10/25 11:33:50 INFO mapred.LocalJobRunner:
13/10/25 11:33:50 INFO mapred.Task: Task attempt_local600426365_0002_r_000000_0 is allowed to commit now
13/10/25 11:33:50 INFO output.FileOutputCommitter: Saved output of task 'attempt_local600426365_0002_r_000000_0' to /tmp/intermediate2
13/10/25 11:33:50 INFO mapred.LocalJobRunner: reduce > reduce
13/10/25 11:33:50 INFO mapred.Task: Task 'attempt_local600426365_0002_r_000000_0' done.
13/10/25 11:33:50 INFO mapred.JobClient: map 100% reduce 100%
13/10/25 11:33:50 INFO mapred.JobClient: Job complete: job_local600426365_0002
13/10/25 11:33:50 INFO mapred.JobClient: Counters: 20
13/10/25 11:33:50 INFO mapred.JobClient: File Output Format Counters
13/10/25 11:33:50 INFO mapred.JobClient: Bytes Written=89
13/10/25 11:33:50 INFO mapred.JobClient: File Input Format Counters
13/10/25 11:33:50 INFO mapred.JobClient: Bytes Read=324
13/10/25 11:33:50 INFO mapred.JobClient: FileSystemCounters
13/10/25 11:33:50 INFO mapred.JobClient: FILE_BYTES_READ=2486
13/10/25 11:33:50 INFO mapred.JobClient: FILE_BYTES_WRITTEN=213321
13/10/25 11:33:50 INFO mapred.JobClient: Map-Reduce Framework
13/10/25 11:33:50 INFO mapred.JobClient: Map output materialized bytes=88
13/10/25 11:33:50 INFO mapred.JobClient: Map input records=10
13/10/25 11:33:50 INFO mapred.JobClient: Reduce shuffle bytes=0
13/10/25 11:33:50 INFO mapred.JobClient: Spilled Records=10
13/10/25 11:33:50 INFO mapred.JobClient: Map output bytes=144
13/10/25 11:33:50 INFO mapred.JobClient: CPU time spent (ms)=0
13/10/25 11:33:50 INFO mapred.JobClient: Total committed heap usage (bytes)=538705920
13/10/25 11:33:50 INFO mapred.JobClient: Combine input records=10
13/10/25 11:33:50 INFO mapred.JobClient: SPLIT_RAW_BYTES=101
13/10/25 11:33:50 INFO mapred.JobClient: Reduce input records=5
13/10/25 11:33:50 INFO mapred.JobClient: Reduce input groups=5
13/10/25 11:33:50 INFO mapred.JobClient: Combine output records=5
13/10/25 11:33:50 INFO mapred.JobClient: Physical memory (bytes) snapshot=0
13/10/25 11:33:50 INFO mapred.JobClient: Reduce output records=5
13/10/25 11:33:50 INFO mapred.JobClient: Virtual memory (bytes) snapshot=0
13/10/25 11:33:50 INFO mapred.JobClient: Map output records=10

最佳答案

它与dpmap2的for循环中缺少{}有什么关系吗?

编辑:
我想我明白了问题所在。在第二个映射器中,您发出temp2 / temp1 ,因为最终结果中存在无限量,这意味着 temp1 = 0
我想您需要打印出sp.length我想您会发现长度为1,这意味着temp1 = 0的值永远不会改变。

关于hadoop - map 阶段不读取中间结果,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19561600/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com