- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
出于某种原因,我在网上找不到任何好的资源来让分布式缓存与新 API 一起工作。希望这里有人可以解释我做错了什么。我目前的尝试是我在网上找到的各种东西的混搭。
该程序尝试运行 k-最近邻算法。输入文件是测试数据集,而分布式缓存保存训练数据集和训练标签。映射器应取一行测试数据,将其与分布式缓存数据中的每一行进行比较,并返回与其最相似的行的标签。
import java.net.URI;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class KNNDriver extends Configured implements Tool {
public int run(String[] args) throws Exception {
if (args.length != 2) {
System.out.printf("Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName());
return -1;
}
Configuration conf = new Configuration();
// conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separator", "^");
conf.setInt ("train_rows",1000);
conf.setInt ("test_rows",1000);
conf.setInt ("cols",612);
DistributedCache.addCacheFile(new URI("cacheData/train_sample.csv"),conf);
DistributedCache.addCacheFile(new URI("cacheData/train_labels.csv"),conf);
Job job = new Job(conf);
job.setJarByClass(KNNDriver.class);
job.setJobName("KNN");
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(KNNMapper.class);
job.setReducerClass(KNNReducer.class);
// job.setInputFormatClass(KeyValueTextInputFormat.class);
job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class);
boolean success = job.waitForCompletion(true);
return success ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new Configuration(), new KNNDriver(), args);
System.exit(exitCode);
}
}
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.FileNotFoundException;
import java.util.Scanner;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class KNNMapper extends Mapper<LongWritable, Text, IntWritable, IntWritable> {
int[][] train_vals;
int[] train_label_vals;
int train_rows;
int test_rows;
int cols;
@Override
public void setup(Context context) throws IOException, InterruptedException {
Configuration conf = context.getConfiguration();
// Path[] cacheFiles = context.getLocalCacheFiles();
int train_rows = conf.getInt("train_rows", 0);
int test_rows = conf.getInt("test_rows", 0);
int cols = conf.getInt("cols", 0);
train_vals = new int[train_rows][cols];
train_label_vals = new int[train_rows];
// read train csv, parse, and store into 2d int array
Scanner myScan;
try {
myScan = new Scanner(new File("train_sample.csv"));
//Set the delimiter used in file
myScan.useDelimiter("[,\r\n]+");
//Get all tokens and store them in some data structure
//I am just printing them
System.out.println("myScan loaded for train_sample");
for(int row = 0; row < train_rows; row++) {
for(int col = 0; col < cols; col++) {
train_vals[row][col] = Integer.parseInt(myScan.next().toString());
}
}
myScan.close();
} catch (FileNotFoundException e) {
System.out.print("Error: Train file not found.");
}
// read train_labels csv, parse, and store into 2d int array
try {
myScan = new Scanner(new File("train_labels.csv"));
//Set the delimiter used in file
myScan.useDelimiter("[,\r\n]+");
//Get all tokens and store them in some data structure
//I am just printing them
System.out.println("myScan loaded for train_sample");
for(int row = 0; row < train_rows; row++) {
train_label_vals[row] = Integer.parseInt(myScan.next().toString());
}
myScan.close();
} catch (FileNotFoundException e) {
System.out.print("Error: Train Labels file not found.");
}
}
@Override
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// setup() gave us train_vals & train_label_vals.
// Each line in map() represents a test observation. We iterate
// through every train_val row to find nearest L2 match, then
// return a key/value pair of <observation #,
// convert from Text to String
String line = value.toString();
long distance;
double best_distance = Double.POSITIVE_INFINITY;
int col_num;
int best_digit = -1;
IntWritable rowId = null;
int i;
IntWritable rowNum;
String[] pixels;
// comma delimited files, split on commas
// first we find the # of rows
for (i = 0; i < train_rows; i++) {
distance = 0;
col_num = 0;
pixels = line.split(",");
rowId = new IntWritable(Integer.parseInt(pixels[0]));
for (int j = 1; j < cols; j++) {
distance += (Integer.parseInt(pixels[j]) - train_vals[i][j-1])^2;
}
if (distance < best_distance) {
best_distance = distance;
best_digit = train_label_vals[i];
}
}
context.write(rowId, new IntWritable(best_digit));
}
}
最佳答案
尝试使用符号链接(symbolic link):
DistributedCache.createSymlink(conf);
DistributedCache.addCacheFile(new URI("cacheData/train_sample.csv#train_sample.csv"),conf);
DistributedCache.addCacheFile(new URI("cacheData/train_labels.csv#train_labels.csv"),conf);
关于hadoop - 设置和访问分布式缓存的问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21247085/
我们有数据(此时未分配)要转换/聚合/透视到 wazoo。 我在 www 上看了看,我问的所有答案都指向 hadoop 可扩展、运行便宜(没有 SQL 服务器机器和许可证)、快速(如果你有足够的数据)
这很明显,我们都同意我们可以将 HDFS + YARN + MapReduce 称为 Hadoop。但是,Hadoop 生态系统中的其他不同组合和其他产品会怎样? 例如,HDFS + YARN + S
如果 es-hadoop 只是连接到 HDFS 的 Hadoop 连接器,它如何支持 Hadoop 分析? 最佳答案 我假设您指的是 this project .在这种情况下,ES Hadoop 项目
看完this和 this论文,我决定我想在 MapReduce 上为大型数据集实现分布式体积渲染设置作为我的本科论文工作。 Hadoop 是一个合理的选择吗? Java 不会扼杀一些性能提升或使与 C
我一直在尝试查找有关如何通过命令行提交 hadoop 作业的信息。 我知道命令 - hadoop jar jar-file 主类输入输出 还有另一个命令,我正在尝试查找有关它的信息,但未能找到 - h
Hadoop 服务器在 Kubernetes 中。而Hadoop客户端位于外网。所以我尝试使用 kubernetes-service 来使用 Hadoop 服务器。但是 hadoop fs -put
有没有人遇到奇怪的环境问题,在调用 hadoop 命令时被迫使用 SU 而不是 SUDO? sudo su -c 'hadoop fs -ls /' hdfs Found 4 itemsdrwxr-x
在更改 mapred-site.xml 中的属性后,我给出了一个 tar.bz2 文件、.gz 和 tar.gz 文件作为输入。以上似乎都没有奏效。我假设这里发生的是 hadoop 作为输入读取的记录
如何在 Hadoop Pipes 中获取正在 hadoop 映射器 中执行的输入文件 名称? 我可以很容易地在基于 java 的 map reducer 中获取文件名,比如 FileSplit fil
我想使用 MapReduce 方法分析连续的数据流(通过 HTTP 访问),因此我一直在研究 Apache Hadoop。不幸的是,Hadoop 似乎期望以固定大小的输入文件开始作业,而不是能够在新数
名称节点可以执行任务吗?默认情况下,任务在集群的数据节点上执行。 最佳答案 假设您正在询问MapReduce ... 使用YARN,MapReduce任务在应用程序主数据库中执行,而不是在nameno
我有一个关系A包含 (zip-code). 我还有另一个关系B包含 (name:gender:zip-code) (x:m:1234) (y:f:1234) (z:m:1245) (s:f:1235)
我是hadoop地区的新手。您能帮我负责(k2,list[v2,v2,v2...])形式的输出(意味着将键及其所有关联值组合在一起)的责任是吗? 谢谢。 最佳答案 这是Hadoop的MapReduce
因此,我一直在尝试编写一个hadoop程序,该程序将输入作为一个包含许多文件的文件,并且我希望hadoop程序的输出仅是输入文件的一行。但是我还没有做到这一点。我也不想去 reducer 课。如果有人
我使用的输入文本文件的内容是 1 "Come 1 "Defects," 1 "I 1 "Information 1 "J" 2 "Plain 5 "Project 1
谁能告诉我以下grep命令的作用: $ bin/hadoop jar hadoop-*-examples.jar grep input output 'dfs[a-z.]+' 最佳答案 http:/
我不了解mapreducer的基本功能,mapreducer是否有助于将文件放入HDFS 或mapreducer仅有助于分析HDFS中现有文件中的内容 我对hadoop非常陌生,任何人都可以指导我理解
CopyFromLocal将从本地文件系统上载数据。 不要放会从任何文件上传数据,例如。本地FS,亚马逊S3 或仅来自本地fs ??? 最佳答案 请找到两个命令的用法。 put ======= Usa
我开始研究hadoop mapreduce。 我是Java和hadoop的初学者,并且了解hadoop mapreduce的编码,但是有兴趣了解它在云中的内部工作方式。 您能否分享一些很好的链接来说明
我一直在寻找Hadoop mapreduce类的类路径。我正在使用Hortonworks 2.2.4版沙箱。我需要这样的类路径来运行我的javac编译器: javac -cp (CLASS_PATH)
我是一名优秀的程序员,十分优秀!