gpt4 book ai didi

python - 使用 python 模糊图像部分的最优雅的方法是什么?

转载 作者:行者123 更新时间:2023-12-02 20:05:35 25 4
gpt4 key购买 nike

我发现以下答案使用 PIL 在本地模糊图像: Filter part of image using PIL, python 。提议的答案裁剪图像的一部分,对其进行模糊处理并将其复制回原始图像。这会在模糊部分和原始图像之间创建清晰的边缘(请参见下面的示例)。

image

我想避免这种影响。

最佳答案

要避免此问题,可以使用以下过程:

  • 给定图像和掩码(值介于 0 和 1 之间)
  • 模糊完整输入图像和蒙版
  • 使用模糊蒙版对原始图像进行加权
  • 使用反转模糊蒙版对模糊图像进行加权
  • 添加加权图像

下面是一些使用 scipy 的示例代码:

import numpy as np
import matplotlib.pyplot as plt
from scipy import misc
import scipy.ndimage


def gaussian_blur(sharp_image, sigma):
# Filter channels individually to avoid gray scale images
blurred_image_r = scipy.ndimage.filters.gaussian_filter(sharp_image[:, :, 0], sigma=sigma)
blurred_image_g = scipy.ndimage.filters.gaussian_filter(sharp_image[:, :, 1], sigma=sigma)
blurred_image_b = scipy.ndimage.filters.gaussian_filter(sharp_image[:, :, 2], sigma=sigma)
blurred_image = np.dstack((blurred_image_r, blurred_image_g, blurred_image_b))
return blurred_image


def uniform_blur(sharp_image, uniform_filter_size):
# The multidimensional filter is required to avoid gray scale images
multidim_filter_size = (uniform_filter_size, uniform_filter_size, 1)
blurred_image = scipy.ndimage.filters.uniform_filter(sharp_image, size=multidim_filter_size)
return blurred_image


def blur_image_locally(sharp_image, mask, use_gaussian_blur, gaussian_sigma, uniform_filter_size):

one_values_f32 = np.full(sharp_image.shape, fill_value=1.0, dtype=np.float32)
sharp_image_f32 = sharp_image.astype(dtype=np.float32)
sharp_mask_f32 = mask.astype(dtype=np.float32)

if use_gaussian_blur:
blurred_image_f32 = gaussian_blur(sharp_image_f32, sigma=gaussian_sigma)
blurred_mask_f32 = gaussian_blur(sharp_mask_f32, sigma=gaussian_sigma)

else:
blurred_image_f32 = uniform_blur(sharp_image_f32, uniform_filter_size)
blurred_mask_f32 = uniform_blur(sharp_mask_f32, uniform_filter_size)

blurred_mask_inverted_f32 = one_values_f32 - blurred_mask_f32
weighted_sharp_image = np.multiply(sharp_image_f32, blurred_mask_f32)
weighted_blurred_image = np.multiply(blurred_image_f32, blurred_mask_inverted_f32)
locally_blurred_image_f32 = weighted_sharp_image + weighted_blurred_image

locally_blurred_image = locally_blurred_image_f32.astype(dtype=np.uint8)

return locally_blurred_image


if __name__ == '__main__':

sharp_image = misc.face()
height, width, channels = sharp_image.shape
sharp_mask = np.full((height, width, channels), fill_value=1)
sharp_mask[int(height / 4): int(3 * height / 4), int(width / 4): int(3 * width / 4), :] = 0

result = blur_image_locally(
sharp_image,
sharp_mask,
use_gaussian_blur=True,
gaussian_sigma=31,
uniform_filter_size=201)
plt.imshow(result)
plt.show()

结果: enter image description here

关于python - 使用 python 模糊图像部分的最优雅的方法是什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54826757/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com