gpt4 book ai didi

pyspark - 在 Pyspark 中实现 K-medoids

转载 作者:行者123 更新时间:2023-12-02 20:00:59 25 4
gpt4 key购买 nike

我找不到在 Pyspark 中使用 PAM (K-medoids) 的库。

我在 Scala 中发现了这个: https://gist.github.com/erikerlandson/c3c35f0b1aae737fc884

Spark 中的这个问题已于 2016 年得到解决: https://issues.apache.org/jira/browse/SPARK-4510
https://github.com/apache/spark/pull/3382

但它似乎不起作用,并且这没有包含在 mllib 文档中: http://spark.apache.org/docs/2.0.0/api/python/pyspark.mllib.html#module-pyspark.mllib.clustering

有人知道 Pyspark 中的 PAM 库吗?

谢谢

最佳答案

前几天我实际上为了好玩而尝试过这个。关于性能不能说太多,因为我对 Spark 还很陌生。但这里是带有 K++ 播种的 KMedoids:

# (c) 2020 Jonathan Kelsey
# This code is licensed under MIT license
from pyspark.sql import functions as F
import pyspark
import numpy as np
import sys

def seed_kernel(data_broadcast, data_id_value, centeroids, k, metric):
data = data_broadcast.value
point = data_id_value[1]
min_distance = sys.maxsize
for j in range(len(centeroids)):
distance = metric(point, data[centeroids[j]])
min_distance = min(min_distance, distance)
return min_distance

def seed_clusters(data_broadcast, data_frame, k, metric):
data = data_broadcast.value
centeroids = list(np.random.choice(data.shape[0], 1, replace=False))
for i in range(k - 1):
print("clusterSeed", i)
distances = []
mK = data_frame.rdd.map(lambda data_id_value: seed_kernel(data_broadcast, data_id_value, centeroids, k, metric))
mK_collect = mK.collect()
distances = np.array(mK_collect)
next_centeroid = np.argmax(distances)
centeroids.append(next_centeroid)
print("centeroids", centeroids)
return centeroids

def nearest_centeroid_kernel(data_id_value, centeroid_id_values, metric):
_, data_value = data_id_value
data_np = np.asarray(data_value)
distances = []
for _, centeroid_value in centeroid_id_values:
centeroid_np = np.asarray(centeroid_value)
distance = metric(data_np, centeroid_np)
distances.append(distance)
distances = np.asarray(distances)
closest_centeroid = np.argmin(distances)
return int(closest_centeroid)

def optimise_cluster_membership_spark(data, data_frame, n, metric, intital_cluster_indices=None):
data_shape = data.shape
data_rdd = data_frame.rdd
data_length = data_shape[0]
if intital_cluster_indices is None:
index = np.random.choice(data_length, n, replace=False)
else:
index = intital_cluster_indices
list_index = [int(i) for i in list(index)]
centeroid_id_values = [(i,data[index[i]]) for i in range(len(index))]
data_rdd = data_rdd.filter(lambda data_id_value: int(data_id_value["id"]) not in list_index)
associated_cluster_points = data_rdd.map(lambda data_id_value: (data_id_value[0],nearest_centeroid_kernel(data_id_value, centeroid_id_values, metric)))
clusters = associated_cluster_points.toDF(["id", "bestC"]).groupBy("bestC").agg(F.collect_list("id").alias("cluster"))
return index, clusters

def cost_kernel(data_broadcast, test_centeroid, cluster_data, metric):
data = data_broadcast.value
cluster = np.asarray(cluster_data)
cluster_length = cluster.shape[0]
feature_length = data.shape[1]
test_centeroid_column = np.zeros(shape=(cluster_length, feature_length), dtype=data.dtype)
new_cluster_column = np.zeros(shape=(cluster_length, feature_length), dtype=data.dtype)
for i in range(0, cluster_length):
new_cluster_column[i] = data[cluster[i]]
test_centeroid_column[i] = data[int(test_centeroid)]
pairwise_distance = metric(new_cluster_column, test_centeroid_column)# (np.absolute(new_cluster_column-test_centeroid_column).sum(axis=1))# metric(new_cluster_column, test_centeroid_column)
cost = np.sum(pairwise_distance)
return float(cost) #new_cluster_column.shape[1]

def optimise_centroid_selection_spark(data_broadcast, data_frame, centeroids, clusters_frames, metric):
data = data_broadcast.value
new_centeroid_ids = []
total_cost = 0
for cluster_idx in range(len(centeroids)):
old_centeroid = centeroids[cluster_idx]
cluster_frame = clusters_frames.filter(clusters_frames.bestC == cluster_idx).select(F.explode(clusters_frames.cluster))
cluster_data = cluster_frame.collect()
if cluster_data:
cluster_data = [cluster_data[i].col for i in range(len(cluster_data))]
else:
cluster_data = []
cost_data = cluster_frame.rdd.map(lambda point_id: (point_id[0], cost_kernel(data_broadcast, point_id[0], cluster_data, metric)))
cost = cost_data.map(lambda point_id_cost: point_id_cost[1]).sum()
total_cost = total_cost + cost
point_result = cost_data.sortBy(lambda point_id_cost: point_id_cost[1]).take(1)
if (point_result):
best_point = point_result[0][0]
else:
best_point = old_centeroid
new_centeroid_ids.append(best_point)
return (new_centeroid_ids, total_cost)


def validate_metric(metric):
if (metric == "euclidean" or metric == "hamming"):
return True
if isinstance(metric, dict) == False:
return "Metric is not a dictionary. And not a known string 'euclidean' or 'hamming'"
metric_keys = metric.keys()
if "point" not in metric_keys or "vector" not in metric_keys:
return "Metric does not contain a member function for 'point' and/or 'point'."
if callable(metric["point"]) == False or callable(metric["vector"]) == False:
return "Metric.point and/or Metric.vector are not callable functions."
if (metric["point"].__code__.co_argcount != 2 and metric["vector"].__code__.co_argcount != 2):
return "Metric.point and/or Metric.vector do not both have 2 arguments."
return True

# pre-defined metrics

#vector metrics
def hamming_vector(stack1, stack2):
return (stack1 != stack2).sum(axis=1)
def euclidean_vector(stack1, stack2):
#return (np.absolute(stack2-stack1)).sum(axis=1)
return np.sqrt(((stack2-stack1)**2).sum(axis=1))

# point metrics
def hamming_point(p1, p2):
return np.sum((p1 != p2))
def euclidean_point(p1, p2):
return np.sqrt(np.sum((p1 - p2)**2))


def fit(sc, data, n_clusters = 2, metric = "euclidean", seeding = "heuristic"):
metric_valid = validate_metric(metric)
if metric_valid == True:
if metric == "euclidean":
point_metric = euclidean_point
vector_metric = euclidean_vector
elif metric == "hamming":
point_metric = hamming_point
vector_metric = hamming_vector
else:
point_metric = metric["point"]
vector_metric = metric["vector"]
else:
print(metric_valid)
return

data_np = np.asarray(data)
data_broadcast = sc.broadcast(data_np)
seeds = None
data_frame = sc.parallelize(data).zipWithIndex().map(lambda xy: (xy[1],xy[0])).toDF(["id", "vector"]).cache()
if (seeding == "heuristic"):
seeds = list(seed_clusters(data_broadcast, data_frame, n_clusters, point_metric))
last_centeroids, last_clusters = optimise_cluster_membership_spark(data_np, data_frame, n_clusters, point_metric, seeds)
last_cost = float('inf')
iteration = 0
escape = False
while not escape:
iteration = iteration + 1
current_centeroids, current_cost = optimise_centroid_selection_spark(data_broadcast, data_frame, last_centeroids, last_clusters, vector_metric)
current_centeroids, current_clusters = optimise_cluster_membership_spark(data_np, data_frame, n_clusters, point_metric, current_centeroids)
print((current_cost<last_cost, current_cost, last_cost, current_cost - last_cost))
if (current_cost<last_cost):
print(("iteration",iteration,"cost improving...", current_cost, last_cost, current_centeroids))
last_cost = current_cost
last_centeroids = current_centeroids
last_clusters = current_clusters
else:
print(("iteration",iteration,"cost got worse or did not improve", current_cost, last_cost))
escape = True
bc = last_clusters.sort("bestC", ascending=True).collect()
unpacked_clusters = [bc[i].cluster for i in range(len(bc))]
return (last_centeroids, unpacked_clusters)

我使用了 pyclustering 中的一些示例数据作为完整性检查:

from pyclustering.cluster import cluster_visualizer
from pyclustering.utils import read_sample
from pyclustering.samples.definitions import FCPS_SAMPLES
from pyclustering.samples.definitions import SIMPLE_SAMPLES
sample = read_sample(FCPS_SAMPLES.SAMPLE_GOLF_BALL)
bestCentroids, bestClusters = fit(sc, sample, 9)
visualizer = cluster_visualizer()
visualizer.append_clusters(bestClusters, sample)
visualizer.show()

enter image description here

关于pyspark - 在 Pyspark 中实现 K-medoids,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55868282/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com