gpt4 book ai didi

pyspark - 如何使用模式匹配从 pyspark 数据框中删除行?

转载 作者:行者123 更新时间:2023-12-02 20:00:04 26 4
gpt4 key购买 nike

我有一个从 CSV 文件读取的 pyspark 数据帧,该文件具有包含十六进制值的值列。

| date     | part  | feature | value"       |
|----------|-------|---------|--------------|
| 20190503 | par1 | feat2 | 0x0 |
| 20190503 | par1 | feat3 | 0x01 |
| 20190501 | par2 | feat4 | 0x0f32 |
| 20190501 | par5 | feat9 | 0x00 |
| 20190506 | par8 | feat2 | 0x00f45 |
| 20190507 | par1 | feat6 | 0x0e62300000 |
| 20190501 | par11 | feat3 | 0x000000000 |
| 20190501 | par21 | feat5 | 0x03efff |
| 20190501 | par3 | feat9 | 0x000 |
| 20190501 | par6 | feat5 | 0x000000 |
| 20190506 | par5 | feat8 | 0x034edc45 |
| 20190506 | par8 | feat1 | 0x00000 |
| 20190508 | par3 | feat6 | 0x00000000 |
| 20190503 | par4 | feat3 | 0x0c0deffe21 |
| 20190503 | par6 | feat4 | 0x0000000000 |
| 20190501 | par3 | feat6 | 0x0123fe |
| 20190501 | par7 | feat4 | 0x00000d0 |

要求是删除包含类似于 0x0、0x00、0x000 等的值的行,这些值在值列中计算为十进制 0(零)。 “0x”之后的 0 数量在整个数据帧中各不相同。通过模式匹配删除是我尝试过的方法,但没有成功。

myFile = sc.textFile("file.txt")
header = myFile.first()

fields = [StructField(field_name, StringType(), True) for field_name in header.split(',')]

myFile_header = myFile.filter(lambda l: "date" in l)
myFile_NoHeader = myFile.subtract(myFile_header)

myFile_df = myFile_NoHeader.map(lambda line: line.split(",")).toDF(schema)

## this is the pattern match I tried
result = myFile_df.withColumn('Test', regexp_extract(col('value'), '(0x)(0\1*\1*)',2 ))
result.show()

我使用的另一种方法是使用 udf:

def convert_value(x):
return int(x,16)

在 pyspark 中使用这个 udf 给我

ValueError: invalid literal for int() with base 16: value

最佳答案

我不太明白你的正则表达式,但是当你想匹配所有包含0x0(+任意数量的零)的字符串时,你可以使用^0x0+$。使用正则表达式过滤可以通过 rlike 来实现波浪号否定匹配。

l = [('20190503', 'par1', 'feat2', '0x0'),
('20190503', 'par1', 'feat3', '0x01'),
('20190501', 'par2', 'feat4', '0x0f32'),
('20190501', 'par5', 'feat9', '0x00'),
('20190506', 'par8', 'feat2', '0x00f45'),
('20190507', 'par1', 'feat6', '0x0e62300000'),
('20190501', 'par11', 'feat3', '0x000000000'),
('20190501', 'par21', 'feat5', '0x03efff'),
('20190501', 'par3', 'feat9', '0x000'),
('20190501', 'par6', 'feat5', '0x000000'),
('20190506', 'par5', 'feat8', '0x034edc45'),
('20190506', 'par8', 'feat1', '0x00000'),
('20190508', 'par3', 'feat6', '0x00000000'),
('20190503', 'par4', 'feat3', '0x0c0deffe21'),
('20190503', 'par6', 'feat4', '0x0000000000'),
('20190501', 'par3', 'feat6', '0x0123fe'),
('20190501', 'par7', 'feat4', '0x00000d0')]

columns = ['date', 'part', 'feature', 'value']

df=spark.createDataFrame(l, columns)

expr = "^0x0+$"
df.filter(~ df["value"].rlike(expr)).show()

输出:

+--------+-----+-------+------------+ 
| date| part|feature| value|
+--------+-----+-------+------------+
|20190503| par1| feat3| 0x01|
|20190501| par2| feat4| 0x0f32|
|20190506| par8| feat2| 0x00f45|
|20190507| par1| feat6|0x0e62300000|
|20190501|par21| feat5| 0x03efff|
|20190506| par5| feat8| 0x034edc45|
|20190503| par4| feat3|0x0c0deffe21|
|20190501| par3| feat6| 0x0123fe|
|20190501| par7| feat4| 0x00000d0|
+--------+-----+-------+------------+

关于pyspark - 如何使用模式匹配从 pyspark 数据框中删除行?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56103432/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com