- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
首先,对于我所犯的任何新手错误表示歉意。但我无法弄清楚也找不到专门针对 deeppavlov (NER) 的来源图书馆。我正在尝试按照描述训练 ner_ontonotes_bert_mult here 。我想它可以从检查点进行训练,使其识别一些特定的模式,例如;
"Round 23/22; 24,9 x 12,2 x 12,3"
作为
[[['Round', '23/22', ';', '24,9 x 12,2 x 12,3']], [['B-PRODUCT', 'I-PRODUCT', 'B-QUANTITY']]]
我的问题是(在深入细节之前):
我什至不明白是否可能,但我决定放弃它并准备了 3 个 .txt
文件作为 "train.txt"
, “test.txt”
和“validation.txt”
为described in deeppovlov web page 。我将它们放在文件夹 '~/.deeppavlov/downloads/ontonotes/ner_ontonotes_bert_mult'
下。我的数据集如下所示:
Round B-PRODUCT
23/22 I-PRODUCT
24,9 x 12,2 x 12,3 B-QUANTITY
Ring B-PRODUCT
HDFAA I-PRODUCT
12,7 x 10 B-QUANTITY
等等...这是我正在尝试训练它的代码:
import os
# Force tensorflow to use CPU instead of GPU.
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
from deeppavlov import configs, train_model
from deeppavlov.core.commands.utils import parse_config
config_dict = parse_config(configs.ner.ner_ontonotes_bert_mult)
print(config_dict['dataset_reader']['data_path'])
from deeppavlov import configs, train_model
ner_model = train_model(configs.ner.ner_ontonotes_bert_mult)
但我收到此错误:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [3] rhs shape= [37]
[[{{node save/Assign_280}}]]
完整回溯:
2019-09-26 15:50:27.63 ERROR in 'deeppavlov.core.common.params'['params'] at line 110: Exception in <class 'deeppavlov.models.bert.bert_ner.BertNerModel'>
Traceback (most recent call last):
File "/home/custom_user/.local/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1356, in _do_call
return fn(*args)
File "/home/custom_user/.local/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1341, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "/home/custom_user/.local/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1429, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [3] rhs shape= [37]
[[{{node save/Assign_280}}]]
我意识到我不能使用“Round 23/22; 24,9 x 12,2 x 12,3”这样的样本。我需要它们是完整的句子。
这似乎是由于我的数据集而发生的。我的自定义数据集只有 3 个标签(B-PRODUCT
、I-PRODUCT
和 B-QUANTITY
),但预训练模型有 37 个他们。所有可用标签均可找到 here在“可用标签列表及其描述如下。”
的句子下。 18个主标签(其中B
和I
36个标签),以及O
标签(“O”表示没有实体))。 数据集中需要存在所有 37 个标签。我能够通过添加虚拟句子来传递该错误,方法是将它们全部标记为缺少的标签。这是一个糟糕的解决方法,因为我愿意破坏我自己的数据集。我仍在寻找一种“合乎逻辑”的训练方式......
PS:现在我收到此错误。
Traceback (most recent call last):
File "/home/custom_user/.PyCharm2019.2/config/scratches/scratch_9.py", line 13, in <module>
ner_model = train_model(configs.ner.ner_ontonotes_bert_mult)
File "/home/custom_user/.local/lib/python3.6/site-packages/deeppavlov/__init__.py", line 31, in train_model
train_evaluate_model_from_config(config, download=download, recursive=recursive)
File "/home/custom_user/.local/lib/python3.6/site-packages/deeppavlov/core/commands/train.py", line 121, in train_evaluate_model_from_config
trainer.train(iterator)
File "/home/custom_user/.local/lib/python3.6/site-packages/deeppavlov/core/trainers/nn_trainer.py", line 294, in train
self.train_on_batches(iterator)
File "/home/custom_user/.local/lib/python3.6/site-packages/deeppavlov/core/trainers/nn_trainer.py", line 234, in train_on_batches
self._validate(iterator)
File "/home/custom_user/.local/lib/python3.6/site-packages/deeppavlov/core/trainers/nn_trainer.py", line 150, in _validate
metrics = list(report['metrics'].items())
AttributeError: 'NoneType' object has no attribute 'items'
最佳答案
这里至少有两个问题:
1.代替validation.txt
应该有一个valid.txt
文件;
2.您正在尝试重新训练在具有不同标签集的不同数据集上预训练的模型,这是没有必要的。
要从头开始训练模型,您可以执行以下操作:
import json
from deeppavlov import configs, build_model, train_model
with configs.ner.ner_ontonotes_bert_mult.open(encoding='utf8') as f:
ner_config = json.load(f)
ner_config['dataset_reader']['data_path'] = '~/my_data_dir/' # directory with train.txt, valid.txt and test.txt files
ner_config['metadata']['variables']['NER_PATH'] = '~/where_to_save_the_model/'
ner_config['metadata']['download'] = [ner_config['metadata']['download'][-1]] # do not download the pretrained ontonotes model
ner_model = train_model(ner_config, download=True)
另一件可能出错的事情是标记化: "Round 23/22; 24,9 x 12,2 x 12,3"
将按模型拆分为 ['Round', '23', '/', '22', ';', '24', ',', '9', 'x', '12', ',', '2', 'x', '12', ',', '3']
而不是['Round', '23/22', ';', '24,9 x 12,2 x 12,3']
。
但是您可以预先标记您的文本:
ner_model([['Round', '23/22', ';', '24,9 x 12,2 x 12,3']])
关于python-3.x - 如何在 Deeppavlov (NER) Python 3 中训练模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58117763/
我需要将文本放在 中在一个 Div 中,在另一个 Div 中,在另一个 Div 中。所以这是它的样子: #document Change PIN
奇怪的事情发生了。 我有一个基本的 html 代码。 html,头部, body 。(因为我收到了一些反对票,这里是完整的代码) 这是我的CSS: html { backgroun
我正在尝试将 Assets 中的一组图像加载到 UICollectionview 中存在的 ImageView 中,但每当我运行应用程序时它都会显示错误。而且也没有显示图像。 我在ViewDidLoa
我需要根据带参数的 perl 脚本的输出更改一些环境变量。在 tcsh 中,我可以使用别名命令来评估 perl 脚本的输出。 tcsh: alias setsdk 'eval `/localhome/
我使用 Windows 身份验证创建了一个新的 Blazor(服务器端)应用程序,并使用 IIS Express 运行它。它将显示一条消息“Hello Domain\User!”来自右上方的以下 Ra
这是我的方法 void login(Event event);我想知道 Kotlin 中应该如何 最佳答案 在 Kotlin 中通配符运算符是 * 。它指示编译器它是未知的,但一旦知道,就不会有其他类
看下面的代码 for story in book if story.title.length < 140 - var story
我正在尝试用 C 语言学习字符串处理。我写了一个程序,它存储了一些音乐轨道,并帮助用户检查他/她想到的歌曲是否存在于存储的轨道中。这是通过要求用户输入一串字符来完成的。然后程序使用 strstr()
我正在学习 sscanf 并遇到如下格式字符串: sscanf("%[^:]:%[^*=]%*[*=]%n",a,b,&c); 我理解 %[^:] 部分意味着扫描直到遇到 ':' 并将其分配给 a。:
def char_check(x,y): if (str(x) in y or x.find(y) > -1) or (str(y) in x or y.find(x) > -1):
我有一种情况,我想将文本文件中的现有行包含到一个新 block 中。 line 1 line 2 line in block line 3 line 4 应该变成 line 1 line 2 line
我有一个新项目,我正在尝试设置 Django 调试工具栏。首先,我尝试了快速设置,它只涉及将 'debug_toolbar' 添加到我的已安装应用程序列表中。有了这个,当我转到我的根 URL 时,调试
在 Matlab 中,如果我有一个函数 f,例如签名是 f(a,b,c),我可以创建一个只有一个变量 b 的函数,它将使用固定的 a=a1 和 c=c1 调用 f: g = @(b) f(a1, b,
我不明白为什么 ForEach 中的元素之间有多余的垂直间距在 VStack 里面在 ScrollView 里面使用 GeometryReader 时渲染自定义水平分隔线。 Scrol
我想知道,是否有关于何时使用 session 和 cookie 的指南或最佳实践? 什么应该和什么不应该存储在其中?谢谢! 最佳答案 这些文档很好地了解了 session cookie 的安全问题以及
我在 scipy/numpy 中有一个 Nx3 矩阵,我想用它制作一个 3 维条形图,其中 X 轴和 Y 轴由矩阵的第一列和第二列的值、高度确定每个条形的 是矩阵中的第三列,条形的数量由 N 确定。
假设我用两种不同的方式初始化信号量 sem_init(&randomsem,0,1) sem_init(&randomsem,0,0) 现在, sem_wait(&randomsem) 在这两种情况下
我怀疑该值如何存储在“WORD”中,因为 PStr 包含实际输出。? 既然Pstr中存储的是小写到大写的字母,那么在printf中如何将其给出为“WORD”。有人可以吗?解释一下? #include
我有一个 3x3 数组: var my_array = [[0,1,2], [3,4,5], [6,7,8]]; 并想获得它的第一个 2
我意识到您可以使用如下方式轻松检查焦点: var hasFocus = true; $(window).blur(function(){ hasFocus = false; }); $(win
我是一名优秀的程序员,十分优秀!