- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用以下命令尝试将 Spark(2.4.4 使用 Ananaconda 3 Jupyter Notebook)数据帧写入 Pyspark 中的 parquet 文件,并收到一条我无法解决的非常奇怪的错误消息。如果有任何见解,我将不胜感激。
df.write.mode("overwrite").parquet("test/")
错误信息如下:
--------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-37-2b4a1d75a5f6> in <module>()
1 # df.write.partitionBy("AB").parquet("C:/test.parquet",mode='overwrite')
----> 2 df.write.mode("overwrite").parquet("test/")
3 # df.write.mode('SaveMode.Overwrite').parquet("C:/test.parquet")
C:\spark-2.4.4-bin-hadoop2.7\python\pyspark\sql\readwriter.py in parquet(self, path, mode, partitionBy, compression)
841 self.partitionBy(partitionBy)
842 self._set_opts(compression=compression)
--> 843 self._jwrite.parquet(path)
844
845 @since(1.6)
C:\spark-2.4.4-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
C:\spark-2.4.4-bin-hadoop2.7\python\pyspark\sql\utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
C:\spark-2.4.4-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
Py4JJavaError: An error occurred while calling o862.parquet.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:198)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:159)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:676)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:285)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:271)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:229)
at org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:566)
at sun.reflect.GeneratedMethodAccessor114.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Unknown Source)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 52.0 failed 1 times, most recent failure: Lost task 0.0 in stage 52.0 (TID 176, localhost, executor driver): java.io.IOException: (null) entry in command string: null chmod 0644 C:\Users\583621\OneDrive - Booz Allen Hamilton\Personal\Teaching\PySpark Essentials for Data Scientists\PySpark DataFrame Essentials\test\_temporary\0\_temporary\attempt_20191206164455_0052_m_000000_176\part-00000-2cd01dbe-9e3f-44a5-88e1-e904822024c2-c000.snappy.parquet
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:770)
at org.apache.hadoop.util.Shell.execCommand(Shell.java:866)
at org.apache.hadoop.util.Shell.execCommand(Shell.java:849)
at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:733)
at org.apache.hadoop.fs.RawLocalFileSystem$LocalFSFileOutputStream.<init>(RawLocalFileSystem.java:225)
at org.apache.hadoop.fs.RawLocalFileSystem$LocalFSFileOutputStream.<init>(RawLocalFileSystem.java:209)
at org.apache.hadoop.fs.RawLocalFileSystem.createOutputStreamWithMode(RawLocalFileSystem.java:307)
at org.apache.hadoop.fs.RawLocalFileSystem.create(RawLocalFileSystem.java:296)
at org.apache.hadoop.fs.RawLocalFileSystem.create(RawLocalFileSystem.java:328)
at org.apache.hadoop.fs.ChecksumFileSystem$ChecksumFSOutputSummer.<init>(ChecksumFileSystem.java:398)
at org.apache.hadoop.fs.ChecksumFileSystem.create(ChecksumFileSystem.java:461)
at org.apache.hadoop.fs.ChecksumFileSystem.create(ChecksumFileSystem.java:440)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:911)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:892)
at org.apache.parquet.hadoop.util.HadoopOutputFile.create(HadoopOutputFile.java:74)
at org.apache.parquet.hadoop.ParquetFileWriter.<init>(ParquetFileWriter.java:248)
at org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:390)
at org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:349)
at org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.<init>(ParquetOutputWriter.scala:37)
at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anon$1.newInstance(ParquetFileFormat.scala:151)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:120)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:108)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:236)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:170)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1889)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1877)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1876)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1876)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2110)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2059)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2048)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:167)
... 32 more
Caused by: java.io.IOException: (null) entry in command string: null chmod 0644 C:\Users\583621\OneDrive - Booz Allen Hamilton\Personal\Teaching\PySpark Essentials for Data Scientists\PySpark DataFrame Essentials\test\_temporary\0\_temporary\attempt_20191206164455_0052_m_000000_176\part-00000-2cd01dbe-9e3f-44a5-88e1-e904822024c2-c000.snappy.parquet
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:770)
at org.apache.hadoop.util.Shell.execCommand(Shell.java:866)
at org.apache.hadoop.util.Shell.execCommand(Shell.java:849)
at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:733)
at org.apache.hadoop.fs.RawLocalFileSystem$LocalFSFileOutputStream.<init>(RawLocalFileSystem.java:225)
at org.apache.hadoop.fs.RawLocalFileSystem$LocalFSFileOutputStream.<init>(RawLocalFileSystem.java:209)
at org.apache.hadoop.fs.RawLocalFileSystem.createOutputStreamWithMode(RawLocalFileSystem.java:307)
at org.apache.hadoop.fs.RawLocalFileSystem.create(RawLocalFileSystem.java:296)
at org.apache.hadoop.fs.RawLocalFileSystem.create(RawLocalFileSystem.java:328)
at org.apache.hadoop.fs.ChecksumFileSystem$ChecksumFSOutputSummer.<init>(ChecksumFileSystem.java:398)
at org.apache.hadoop.fs.ChecksumFileSystem.create(ChecksumFileSystem.java:461)
at org.apache.hadoop.fs.ChecksumFileSystem.create(ChecksumFileSystem.java:440)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:911)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:892)
at org.apache.parquet.hadoop.util.HadoopOutputFile.create(HadoopOutputFile.java:74)
at org.apache.parquet.hadoop.ParquetFileWriter.<init>(ParquetFileWriter.java:248)
at org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:390)
at org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:349)
at org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.<init>(ParquetOutputWriter.scala:37)
at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anon$1.newInstance(ParquetFileFormat.scala:151)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:120)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:108)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:236)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:170)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
... 1 more
1
# Now something a bit more complicated: Read in a full parquet
2
parquet
最佳答案
您需要设置 Hadoop 主目录。您可以从 Hadoop 重新分发中获取 WINUTILS.EXE 二进制文件。对于某些 Hadoop 版本,有一个存储库 on github .
然后1) 您可以将环境变量%HADOOP_HOME%设置为指向包含WINUTILS.EXE的BIN目录之上的目录。
2) 或在代码中配置为
import sys
import os
os.environ['HADOOP_HOME'] = "C:/Mine/Spark/hadoop-2.6.0"
sys.path.append("C:/Mine/Spark/hadoop-2.6.0/bin")
希望这有帮助!
关于pyspark - 无法将 Spark 数据帧以 Parquet 文件格式写入 PySpark 中的 C 驱动器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59220832/
我通过 spring ioc 编写了一些 Rest 应用程序。但我无法解决这个问题。这是我的异常(exception): org.springframework.beans.factory.BeanC
我对 TestNG、Spring 框架等完全陌生,我正在尝试使用注释 @Value通过 @Configuration 访问配置文件注释。 我在这里想要实现的目标是让控制台从配置文件中写出“hi”,通过
为此工作了几个小时。我完全被难住了。 这是 CS113 的实验室。 如果用户在程序(二进制计算器)结束时选择继续,我们需要使用 goto 语句来到达程序的顶部。 但是,我们还需要释放所有分配的内存。
我正在尝试使用 ffmpeg 库构建一个小的 C 程序。但是我什至无法使用 avformat_open_input() 打开音频文件设置检查错误代码的函数后,我得到以下输出: Error code:
使用 Spring Initializer 创建一个简单的 Spring boot。我只在可用选项下选择 DevTools。 创建项目后,无需对其进行任何更改,即可正常运行程序。 现在,当我尝试在项目
所以我只是在 Mac OS X 中通过 brew 安装了 qt。但是它无法链接它。当我尝试运行 brew link qt 或 brew link --overwrite qt 我得到以下信息: ton
我在提交和 pull 时遇到了问题:在提交的 IDE 中,我看到: warning not all local changes may be shown due to an error: unable
我跑 man gcc | grep "-L" 我明白了 Usage: grep [OPTION]... PATTERN [FILE]... Try `grep --help' for more inf
我有一段代码,旨在接收任何 URL 并将其从网络上撕下来。到目前为止,它运行良好,直到有人给了它这个 URL: http://www.aspensurgical.com/static/images/a
在过去的 5 个小时里,我一直在尝试在我的服务器上设置 WireGuard,但在完成所有设置后,我无法 ping IP 或解析域。 下面是服务器配置 [Interface] Address = 10.
我正在尝试在 GitLab 中 fork 我的一个私有(private)项目,但是当我按下 fork 按钮时,我会收到以下信息: No available namespaces to fork the
我这里遇到了一些问题。我是 node.js 和 Rest API 的新手,但我正在尝试自学。我制作了 REST API,使用 MongoDB 与我的数据库进行通信,我使用 Postman 来测试我的路
下面的代码在控制台中给出以下消息: Uncaught DOMException: Failed to execute 'appendChild' on 'Node': The new child el
我正在尝试调用一个新端点来显示数据,我意识到在上一组有效的数据中,它在数据周围用一对额外的“[]”括号进行控制台,我认为这就是问题是,而新端点不会以我使用数据的方式产生它! 这是 NgFor 失败的原
我正在尝试将我的 Symfony2 应用程序部署到我的 Azure Web 应用程序,但遇到了一些麻烦。 推送到远程时,我在终端中收到以下消息 remote: Updating branch 'mas
Minikube已启动并正在运行,没有任何错误,但是我无法 curl IP。我在这里遵循:https://docs.traefik.io/user-guide/kubernetes/,似乎没有提到关闭
每当我尝试docker组成任何项目时,都会出现以下错误。 我尝试过有和没有sudo 我在这台机器上只有这个问题。我可以在Mac和Amazon WorkSpace上运行相同的容器。 (myslabs)
我正在尝试 pip install stanza 并收到此消息: ERROR: No matching distribution found for torch>=1.3.0 (from stanza
DNS 解析看起来不错,但我无法 ping 我的服务。可能是什么原因? 来自集群中的另一个 Pod: $ ping backend PING backend.default.svc.cluster.l
我正在使用Hibernate 4 + Spring MVC 4当我开始 Apache Tomcat Server 8我收到此错误: Error creating bean with name 'wel
我是一名优秀的程序员,十分优秀!