- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
编辑更新了问题标题,反射(reflect)这个问题可以推广到“任意两行”,而不一定需要是一行中的固定y。
考虑以下多边形图:
ggplot(df, aes(x=year,y=afw)) +
geom_polygon() +
scale_x_continuous("", expand=c(0,0), breaks=seq(1910,2010,10)) +
theme_bw()
但是,我想用两种不同的颜色填充它。例如,0
以上的黑色区域为红色,0
以下的黑色区域为蓝色。不幸的是,使用 fill=col
无法填充正确的区域。
我尝试了以下代码(我添加了geom_line
以说明填充边框应该在哪里):
ggplot(df, aes(x=year,y=afw)) +
geom_line() +
geom_polygon(aes(fill=col), alpha=0.5) +
scale_x_continuous("", expand=c(0,0), breaks=seq(1910,2010,10)) +
theme_bw()
给出:
正如您所看到的,它的填充量比预期的要多得多。我该如何解决这个问题?
数据:
df <- structure(list(year = c(1901, 1901, 1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911, 1912, 1913, 1914, 1915, 1916, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1925, 1926, 1927, 1928, 1929, 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, 1943, 1944, 1945, 1946, 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2013, 2013), afw = c(0, 0, -0.246246074793035, -2.39463317156723, -2.39785897801884, 0.840850699400514, -0.843020268341422, -3.02043962318013, -0.033342848986583, -2.04947188124465, -0.00431059092206709, 2.49568940907793, 1.96988295746503, 2.26665715101342, 0.986011989723095, 1.79568940907793, 2.06665715101342, -0.601084784470454, -3.21076220382529, 2.65052811875535, 0.46988295746503, -1.09140736511562, 0.0505281187553526, 1.41827005423922, -2.80108478447045, 0.611818441335997, -1.83011704253497, -0.30753639737368, -4.43011704253497, -0.897858978018841, 1.98601198972309, -0.965600913502712, 0.0795603768198685, 0.308592634884385, -5.33011704253497, 4.00214102198116, -0.594633171567228, 0.0698829574650297, -1.60753639737368, -2.81398801027691, -2.21398801027691, -2.4365686554382, 1.53439908649729, 1.06665715101342, -1.87205252640594, -0.688181558664002, 0.0569797316585783, -3.51398801027691, 0.979560376819868, 0.289237796174707, 1.24085069940051, -4.39140736511562, 1.13117328004567, -1.72689123608336, 2.20214102198116, 2.27310876391664, 1.46665715101342, 2.18278618327148, -0.23011704253497, 1.50536682843277, 1.17633457036826, -0.0785041393091639, -1.54947188124465, -3.85269768769626, -4.31398801027691, -0.80753639737368, 1.27956037681987, 1.2376248929489, 0.195689409077933, -3.38172994576078, -4.88172994576078, -0.675278332857551, 2.25375392520697, 0.0924636026263199, -0.446246074793035, 4.06988295746503, 0.350528118755352, -1.48172994576078, 1.81504424778761, -1.42689123608336, 2.22472166714245, 0.376334570368256, -3.88495575221239, 0.211818441335998, 0.586011989723094, 1.14407650585213, 2.55697973165858, 1.92794747359406, 1.20214102198116, 3.83439908649729, 1.64407650585213, 0.986011989723095, 0.753753925206965, 0.508592634884385, 1.911818441336, 2.11504424778761, -4.06560091350271, -2.58495575221239, 1.80859263488438, 1.37956037681987, 1.58923779617471, 1.88601198972309, -0.323665429631744, -0.291407365115615, 0.818270054239223, 0.0569797316585783, 0.795689409077933, 3.32472166714245, 0.595689409077933, -0.733342848986583, -0.955923494147874, -4.32689123608336, 3.29891521552955, 1.85697973165858, 2.74407650585213, 0, 0), col = structure(c(1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L), .Label = c("B", "A"), class = "factor")), .Names = c("year", "afw", "col"), class = c("tbl_df", "data.frame"), row.names = c(NA, -117L))
注意:正如您在数据中看到的,1901 年和 2013 年都有 3 行。我这样做是因为我想正确填充。尽管黑色填充是正确的,但我似乎没有找到可用的颜色解决方案。
原始数据集:
orig <- structure(list(year = c(1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911, 1912, 1913, 1914, 1915, 1916, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1925, 1926, 1927, 1928, 1929, 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, 1943, 1944, 1945, 1946, 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013), afw = c(-0.246246074793035, -2.39463317156723, -2.39785897801884, 0.840850699400514, -0.843020268341422, -3.02043962318013, -0.033342848986583, -2.04947188124465, -0.00431059092206709, 2.49568940907793, 1.96988295746503, 2.26665715101342, 0.986011989723095, 1.79568940907793, 2.06665715101342, -0.601084784470454, -3.21076220382529, 2.65052811875535, 0.46988295746503, -1.09140736511562, 0.0505281187553526, 1.41827005423922, -2.80108478447045, 0.611818441335997, -1.83011704253497, -0.30753639737368, -4.43011704253497, -0.897858978018841, 1.98601198972309, -0.965600913502712, 0.0795603768198685, 0.308592634884385, -5.33011704253497, 4.00214102198116, -0.594633171567228, 0.0698829574650297, -1.60753639737368, -2.81398801027691, -2.21398801027691, -2.4365686554382, 1.53439908649729, 1.06665715101342, -1.87205252640594, -0.688181558664002, 0.0569797316585783, -3.51398801027691, 0.979560376819868, 0.289237796174707, 1.24085069940051, -4.39140736511562, 1.13117328004567, -1.72689123608336, 2.20214102198116, 2.27310876391664, 1.46665715101342, 2.18278618327148, -0.23011704253497, 1.50536682843277, 1.17633457036826, -0.0785041393091639, -1.54947188124465, -3.85269768769626, -4.31398801027691, -0.80753639737368, 1.27956037681987, 1.2376248929489, 0.195689409077933, -3.38172994576078, -4.88172994576078, -0.675278332857551, 2.25375392520697, 0.0924636026263199, -0.446246074793035, 4.06988295746503, 0.350528118755352, -1.48172994576078, 1.81504424778761, -1.42689123608336, 2.22472166714245, 0.376334570368256, -3.88495575221239, 0.211818441335998, 0.586011989723094, 1.14407650585213, 2.55697973165858, 1.92794747359406, 1.20214102198116, 3.83439908649729, 1.64407650585213, 0.986011989723095, 0.753753925206965, 0.508592634884385, 1.911818441336, 2.11504424778761, -4.06560091350271, -2.58495575221239, 1.80859263488438, 1.37956037681987, 1.58923779617471, 1.88601198972309, -0.323665429631744, -0.291407365115615, 0.818270054239223, 0.0569797316585783, 0.795689409077933, 3.32472166714245, 0.595689409077933, -0.733342848986583, -0.955923494147874, -4.32689123608336, 3.29891521552955, 1.85697973165858, 2.74407650585213)), .Names = c("year", "afw"), class = c("tbl_df", "data.frame"), row.names = c(NA, -113L))
最佳答案
获取两个连续时间步长的 y 值具有不同符号的索引。在这些点之间使用线性插值来生成新的 x 值,其中 y 为零。
首先,一个较小的示例,以便更轻松地了解线性插值以及哪些点添加到原始数据:
# original data
d <- data.frame(x = 1:6,
y = c(-1, 2, 1, 2, -1, 1))
# coerce to data.table
library(data.table)
setDT(d)
# make sure data is ordered by x
setorder(d, x)
# add a grouping variable
# only to keep track of original and interpolated points in this example
d[ , g := "orig"]
# interpolation
d2 = d[ , {
ix = .I[c(FALSE, abs(diff(sign(d$y))) == 2)]
if(length(ix)){
pred_x = sapply(ix, function(i) approx(x = y[c(i-1, i)], y = x[c(i-1, i)], xout = 0)$y)
rbindlist(.(.SD, data.table(x = pred_x, y = 0, g = "new")))} else .SD
}]
d2
# x y grp
# 1 1.000000 -1 orig
# 2 2.000000 2 orig
# 3 3.000000 1 orig
# 4 4.000000 2 orig
# 5 5.000000 -1 orig
# 6 6.000000 1 orig
# 13 1.333333 0 new
# 11 4.666667 0 new
# 12 5.500000 0 new
用颜色区分原始点和新点的绘图:
ggplot(data = d2, aes(x = x, y = y)) +
geom_area(data = d2[y <= 0], fill = "red", alpha = 0.2) +
geom_area(data = d2[y >= 0], fill = "blue", alpha = 0.2) +
geom_point(aes(color = g), size = 4) +
scale_color_manual(values = c("red", "black")) +
theme_bw()
<小时/>
应用于OP的数据:
d = as.data.table(orig)
# setorder(d, year)
d2 = d[ , {
ix = .I[c(FALSE, abs(diff(sign(d$afw))) == 2)]
if(length(ix)){
pred_yr = sapply(ix, function(i) approx(afw[c(i-1, i)], year[c(i-1, i)], xout = 0)$y)
rbindlist(.(.SD, data.table(year = pred_yr, afw = 0)))} else .SD}]
ggplot(data = d2, aes(x = year, y = afw)) +
geom_area(data = d2[afw <= 0], fill = "red") +
geom_area(data = d2[afw >= 0], fill = "blue") +
theme_bw()
<小时/>
回复@Jason Whythe's comment ,可以修改上述方法以考虑分组数据。插值是在每个组内进行的,并且绘图按组进行分面:
# data grouped by 'id'
d = data.table(
id = rep(c("a", "b", "c"), c(6, 5, 4)),
x = as.numeric(c(1:6, 1:5, 1:4)),
y = c(-1, 2, 1, 2, -1, 1,
0, -2, 0, -1, -2,
2, 1, -1, 1.5))
# again, this variable is just added for illustration
d[ , g := "orig"]
d2 = d[ , {
ix = .I[c(FALSE, abs(diff(sign(.SD$y))) == 2)]
if(length(ix)){
pred_x = sapply(ix, function(i) approx(x = d$y[c(i-1, i)], y = d$x[c(i-1, i)], xout = 0)$y)
rbindlist(.(.SD, data.table(x = pred_x, y = 0, g = "new")))} else .SD
}, by = id]
ggplot(data = d2, aes(x = x, y = y)) +
facet_wrap(~ id) +
geom_area(data = d2[y <= 0], fill = "red", alpha = 0.2) +
geom_area(data = d2[y >= 0], fill = "blue", alpha = 0.2) +
geom_point(aes(color = g), size = 4) +
scale_color_manual(values = c("red", "black")) +
theme_bw()
<小时/>
关于r - 如何在两条线之间填充不同的颜色? (原来是: fill geom_polygon with different colors above and below y = 0 (or any other value)?),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27135962/
如何使用 Blazor 在 Linux 平台下运行 Desktop 程序 本文将讲解如何使用 Blazor 运行跨平台应用,应用到的技术有以下几点 Blazor
低并发的友友们好,我是闪客。 Lambda 表达式非常方便,在项目中一般在 stream 编程中用的比较多。 List<Student> studen
我是一名优秀的程序员,十分优秀!