- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个运行在Docker上的Zeppelin笔记本。我有以下代码使用Cassandra:
import org.apache.spark.sql.cassandra._
val cqlContext = new CassandraSQLContext(sc)
cqlContext.sql("select * from demo.table").collect.foreach(println)
import org.apache.spark.sql.cassandra._
cqlContext: org.apache.spark.sql.cassandra.CassandraSQLContext = org.apache.spark.sql.cassandra.CassandraSQLContext@395e28a8
com.google.common.util.concurrent.UncheckedExecutionException: java.lang.IllegalArgumentException: Cannot build a cluster without contact points
at com.google.common.cache.LocalCache$Segment.get(LocalCache.java:2199)
at com.google.common.cache.LocalCache.get(LocalCache.java:3932)
at com.google.common.cache.LocalCache.getOrLoad(LocalCache.java:3936)
at com.google.common.cache.LocalCache$LocalLoadingCache.get(LocalCache.java:4806)
at org.apache.spark.sql.cassandra.CassandraCatalog.lookupRelation(CassandraCatalog.scala:28)
at org.apache.spark.sql.cassandra.CassandraSQLContext$$anon$2.org$apache$spark$sql$catalyst$analysis$OverrideCatalog$$super$lookupRelation(CassandraSQLContext.scala:219)
at org.apache.spark.sql.catalyst.analysis.OverrideCatalog$$anonfun$lookupRelation$3.apply(Catalog.scala:137)
at org.apache.spark.sql.catalyst.analysis.OverrideCatalog$$anonfun$lookupRelation$3.apply(Catalog.scala:137)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.sql.catalyst.analysis.OverrideCatalog$class.lookupRelation(Catalog.scala:137)
at org.apache.spark.sql.cassandra.CassandraSQLContext$$anon$2.lookupRelation(CassandraSQLContext.scala:219)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$5.applyOrElse(Analyzer.scala:143)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$5.applyOrElse(Analyzer.scala:138)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:144)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:162)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildrenDown(TreeNode.scala:191)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:147)
at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:135)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:138)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:137)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:61)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:59)
at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111)
at scala.collection.immutable.List.foldLeft(List.scala:84)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:59)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:51)
at scala.collection.immutable.List.foreach(List.scala:318)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.apply(RuleExecutor.scala:51)
at org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:411)
at org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:411)
at org.apache.spark.sql.SQLContext$QueryExecution.withCachedData$lzycompute(SQLContext.scala:412)
at org.apache.spark.sql.SQLContext$QueryExecution.withCachedData(SQLContext.scala:412)
at org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan$lzycompute(SQLContext.scala:413)
at org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan(SQLContext.scala:413)
at org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan$lzycompute(SQLContext.scala:418)
at org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan(SQLContext.scala:416)
at org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:422)
at org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:422)
at org.apache.spark.sql.SchemaRDD.collect(SchemaRDD.scala:444)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:32)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:37)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:39)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:41)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:43)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:45)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:47)
at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:49)
at $iwC$$iwC$$iwC$$iwC.<init>(<console>:51)
at $iwC$$iwC$$iwC.<init>(<console>:53)
at $iwC$$iwC.<init>(<console>:55)
at $iwC.<init>(<console>:57)
at <init>(<console>:59)
at .<init>(<console>:63)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:852)
at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1125)
at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:674)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:705)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:669)
at com.nflabs.zeppelin.spark.SparkInterpreter.interpretInput(SparkInterpreter.java:541)
at com.nflabs.zeppelin.spark.SparkInterpreter.interpret(SparkInterpreter.java:517)
at com.nflabs.zeppelin.spark.SparkInterpreter.interpret(SparkInterpreter.java:510)
at com.nflabs.zeppelin.interpreter.ClassloaderInterpreter.interpret(ClassloaderInterpreter.java:40)
at com.nflabs.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:76)
at com.nflabs.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:246)
at com.nflabs.zeppelin.scheduler.Job.run(Job.java:152)
at com.nflabs.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:101)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.IllegalArgumentException: Cannot build a cluster without contact points
at com.datastax.driver.core.Cluster.checkNotEmpty(Cluster.java:116)
at com.datastax.driver.core.Cluster.<init>(Cluster.java:108)
at com.datastax.driver.core.Cluster.buildFrom(Cluster.java:177)
at com.datastax.driver.core.Cluster$Builder.build(Cluster.java:1109)
at com.datastax.spark.connector.cql.DefaultConnectionFactory$.createCluster(CassandraConnectionFactory.scala:78)
at com.datastax.spark.connector.cql.CassandraConnector$.com$datastax$spark$connector$cql$CassandraConnector$$createSession(CassandraConnector.scala:167)
at com.datastax.spark.connector.cql.CassandraConnector$$anonfun$2.apply(CassandraConnector.scala:162)
at com.datastax.spark.connector.cql.CassandraConnector$$anonfun$2.apply(CassandraConnector.scala:162)
at com.datastax.spark.connector.cql.RefCountedCache.createNewValueAndKeys(RefCountedCache.scala:31)
at com.datastax.spark.connector.cql.RefCountedCache.acquire(RefCountedCache.scala:56)
at com.datastax.spark.connector.cql.CassandraConnector.openSession(CassandraConnector.scala:73)
at com.datastax.spark.connector.cql.CassandraConnector.withSessionDo(CassandraConnector.scala:99)
at com.datastax.spark.connector.cql.CassandraConnector.withClusterDo(CassandraConnector.scala:110)
at com.datastax.spark.connector.cql.Schema$.fromCassandra(Schema.scala:173)
at org.apache.spark.sql.cassandra.CassandraCatalog$$anon$1.load(CassandraCatalog.scala:22)
at org.apache.spark.sql.cassandra.CassandraCatalog$$anon$1.load(CassandraCatalog.scala:19)
at com.google.common.cache.LocalCache$LoadingValueReference.loadFuture(LocalCache.java:3522)
at com.google.common.cache.LocalCache$Segment.loadSync(LocalCache.java:2315)
at com.google.common.cache.LocalCache$Segment.lockedGetOrLoad(LocalCache.java:2278)
at com.google.common.cache.LocalCache$Segment.get(LocalCache.java:2193)
... 92 more
docker pull cassandra
,但问题仍然存在。
最佳答案
为了使spark连接到cassandra集群,您必须在spark conf中提供cassandra集群的节点之一,如下所示:
conf.set("spark.cassandra.connection.host", "127.0.0.1")
关于apache-spark - 无法使用Spark在Docker上运行Cassandra,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38049141/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!