- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个 pandas DataFrame其中 B 包含固定大小的 NumPy 列表。
|------|---------------|-------|
| A | B | C |
|------|---------------|-------|
| 0 | [2,3,5,6] | X |
|------|---------------|-------|
| 1 | [1,2,3,4] | X |
|------|---------------|-------|
| 2 | [2,3,6,5] | Y |
|------|---------------|-------|
| 3 | [2,3,2,3] | Y |
|------|---------------|-------|
| 4 | [2,3,4,4] | Y |
|------|---------------|-------|
| 5 | [2,3,5,6] | Z |
|------|---------------|-------|
我想按列“C”对它们进行分组,并计算“B”值的平均值作为列表。如下表所示。我想有效地做到这一点。
|----------------|-------|
| B | C |
|----------------|-------|
| [1.5,2.5,4,5] | X |
|----------------|-------|
| [2,3,4,4] | Y |
|----------------|-------|
| [2,3,5,6] | Z |
|----------------|-------|
我考虑过将 NumPy 列表分成单独的列。但这将是我最后的选择。
如何编写自定义聚合函数,因为现在 B 列显示非数字并显示
DataError: No numeric types to aggregate
最佳答案
您可以将值转换为二维数组,然后使用np.mean
:
f = lambda x: np.mean(np.array(x.tolist()), axis=0)
df2 = df.groupby('C')['B'].apply(f).reset_index()
print (df2)
C B
0 X [1.5, 2.5, 4.0, 5.0]
1 Y [2.0, 3.0, 4.0, 4.0]
2 Z [2.0, 3.0, 5.0, 6.0]
最后一个选项解决方案是可能的,但效率较低(感谢@Abhik Sarkar 进行测试):
df1 = pd.DataFrame(df.B.tolist()).groupby(df['C']).mean()
df2 = pd.DataFrame({'B': df1.values.tolist(), 'C': df1.index})
print (df2)
B C
0 [1.5, 2.5, 4.0, 5.0] X
1 [2.0, 3.0, 4.0, 4.0] Y
2 [2.0, 3.0, 5.0, 6.0] Z
关于python - 应用自定义 groupby 聚合函数来查找 Numpy 数组的平均值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61422670/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!