- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个 df,我想按链接
对其进行分组,并按时间
对其进行排序。然后,每次 type == 'vehicle Leaves Traffic'
时,count
列中的单元格应在前一行中的单元格值的基础上添加 +1。如果type == '车辆进入交通'
,则应从前一行中扣除 1。
需要澄清的是,不应更改前一行的值,而是应基于前一行的值更改该行的值。
这是我的方法,但我得到的只是 0、1 和 2。我预计某些链接会有更高的值。
parking_min <- cars %>%
group_by(link)%>%
dplyr::mutate(count = if_else(type == 'vehicle leaves traffic', lag(count, n=1,order_by=time)+1,lag(count))) %>%
dplyr::mutate(count = if_else(type == 'vehicle enters traffic',lag(count, n=1, order_by=time)-1,lag(count)))
这是我的数据:
structure(list(time = c("23707.0", "31209.0", "31210.0", "36230.0",
"36231.0", "38925.0", "39583.0", "40198.0", "40818.0", "41974.0",
"42895.0", "43099.0", "43683.0", "44645.0", "45730.0", "46785.0",
"48846.0", "48905.0", "52790.0", "53829.0", "55021.0", "58240.0",
"58635.0", "59682.0", "59683.0", "63740.0", "63776.0", "68607.0",
"24607.0", "25218.0", "26442.0", "28004.0", "29884.0", "37750.0",
"42623.0", "43965.0", "49426.0", "54925.0", "56688.0", "56689.0",
"57738.0", "61900.0", "64221.0", "67065.0", "69404.0", "77454.0",
"83588.0", "89601.0", "27452.0", "27743.0", "33598.0", "36297.0",
"60604.0", "62940.0", "63184.0", "63250.0", "20911.0", "27013.0",
"29815.0", "49550.0", "53991.0", "55620.0", "61200.0", "67672.0",
"78558.0", "79245.0", "27006.0", "29085.0", "31411.0", "36747.0",
"36877.0", "38434.0", "38807.0", "44607.0", "58068.0", "58800.0",
"65236.0", "65431.0", "69013.0", "69072.0", "25609.0", "29520.0",
"46559.0", "66916.0", "74904.0", "78407.0", "20445.0", "23938.0",
"24017.0", "24281.0", "25283.0", "25873.0", "27137.0", "27342.0",
"28790.0", "28910.0", "29241.0", "29345.0", "29465.0", "29525.0",
"29909.0", "30719.0", "31092.0", "31356.0", "31786.0", "32829.0",
"33966.0", "34175.0", "34545.0", "34888.0", "34977.0", "35775.0",
"35950.0", "38409.0", "38636.0", "39259.0", "39527.0", "40256.0",
"40385.0", "40564.0", "40691.0", "40774.0", "42271.0", "42469.0",
"42895.0", "43103.0", "43223.0", "43599.0", "44476.0", "44903.0",
"44904.0", "45774.0", "45834.0", "45915.0", "46230.0", "46287.0",
"46626.0", "47215.0", "48784.0", "50266.0", "50361.0", "50763.0",
"52685.0", "52793.0", "54688.0", "55105.0", "56310.0", "57885.0",
"58093.0", "58153.0", "59223.0", "60460.0", "60597.0", "60676.0",
"61307.0", "61457.0", "61974.0", "62141.0", "62165.0", "62347.0",
"62591.0", "64175.0", "64280.0", "65555.0", "65808.0", "66038.0",
"66391.0", "66723.0", "66735.0", "66736.0", "66933.0", "67502.0",
"67989.0", "68322.0", "68785.0", "69318.0", "70450.0", "70634.0",
"71069.0", "71741.0", "72121.0", "72292.0", "73236.0", "73775.0",
"74280.0", "80298.0", "80458.0", "80976.0", "81035.0", "84189.0",
"84302.0", "85602.0", "23296.0", "34106.0", "34107.0", "55975.0",
"55976.0", "57434.0", "60561.0", "70091.0", "26085.0", "26163.0",
"26654.0", "27473.0", "28303.0", "29212.0", "29380.0", "29581.0",
"29707.0", "30802.0", "31052.0", "33174.0", "34020.0", "36031.0",
"36392.0", "38037.0", "40717.0", "42099.0", "43154.0", "44413.0",
"44414.0", "44730.0", "44770.0", "46863.0", "46876.0", "48318.0",
"48435.0", "48493.0", "48700.0", "51736.0", "51747.0", "51748.0",
"52221.0", "52302.0", "52599.0", "52921.0", "53104.0", "53230.0",
"53443.0", "54494.0", "55053.0", "56555.0", "56717.0", "58381.0",
"62245.0", "62554.0", "63050.0", "63050.0", "63447.0", "63507.0",
"64054.0", "65090.0", "65090.0", "65217.0", "65218.0", "66571.0",
"66945.0", "67715.0", "68169.0", "68921.0", "68955.0", "69081.0",
"70123.0", "70263.0", "71413.0", "74609.0", "75930.0", "75931.0",
"76676.0", "77855.0", "88490.0", "92653.0", "23458.0", "23770.0",
"29531.0", "29532.0", "32320.0", "32735.0", "47644.0", "50879.0",
"50971.0", "51427.0", "55554.0", "57334.0", "57971.0", "59064.0",
"66852.0", "68689.0", "69206.0", "72502.0", "84592.0", "84593.0",
"90207.0", "90208.0", "34426.0", "74433.0", "32354.0", "64161.0",
"67914.0", "21864.0"), type = c("vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic"), vehicle_id = c(1267069L, 810534L,
810534L, 51825L, 51825L, 1326473L, 1199672L, 1111105L, 1111105L,
532654L, 532654L, 1267069L, 1199672L, 1398907L, 1398907L, 1239391L,
1239391L, 1326473L, 46491L, 46491L, 1179923L, 434774L, 434774L,
4205L, 4205L, 1269433L, 1179923L, 1269433L, 1454119L, 1412246L,
1310775L, 1278645L, 1533113L, 1430553L, 1430553L, 1533113L, 1533113L,
492533L, 1430553L, 1430553L, 492533L, 1278645L, 1454119L, 1533113L,
1278645L, 1310775L, 1412246L, 1278645L, 1161080L, 1290940L, 558745L,
628509L, 628509L, 1161080L, 558745L, 1290940L, 403850L, 774916L,
1530598L, 403850L, 1397256L, 3874L, 774916L, 1530598L, 1397256L,
3874L, 193835L, 1043798L, 1043798L, 1881121L, 193835L, 1221124L,
1881121L, 1221124L, 12799L, 12799L, 526654L, 2066556L, 526654L,
2066556L, 485689L, 486288L, 488147L, 486288L, 485689L, 488147L,
1925302L, 2821L, 1919641L, 2147547L, 1785664L, 1394390L, 1869032L,
1812540L, 1531804L, 1814856L, 1531804L, 2149105L, 1747951L, 1908352L,
1854886L, 1888344L, 1926462L, 1925659L, 1887358L, 1926462L, 1863281L,
1094609L, 1888344L, 1925659L, 1222534L, 2148165L, 1863281L, 2148165L,
1814856L, 1885007L, 1094609L, 1887358L, 1925302L, 1925659L, 1908352L,
1919641L, 1885007L, 1898426L, 1222534L, 2095866L, 1812540L, 1528492L,
2149105L, 1799420L, 1799420L, 1898426L, 2095866L, 1905635L, 1859644L,
1528492L, 1187619L, 1794294L, 1908352L, 1187619L, 2149105L, 1901830L,
1859644L, 1885718L, 1925659L, 4806833L, 1901830L, 1794294L, 4806833L,
2821L, 1905635L, 1785664L, 1887788L, 2149105L, 1885718L, 1912658L,
1394390L, 1457624L, 1869032L, 2147547L, 1908352L, 2064554L, 1457624L,
1902958L, 1888247L, 1888247L, 1670344L, 1898186L, 1378838L, 1378838L,
1840443L, 1747951L, 1887788L, 5259385L, 1215125L, 2064554L, 1912658L,
1887316L, 42794L, 1860654L, 1902958L, 1854886L, 5259385L, 1887316L,
1670344L, 42794L, 1921295L, 1921295L, 1860654L, 1840443L, 1898186L,
1215125L, 80518L, 1131784L, 1131784L, 1060825L, 1060825L, 80518L,
1345214L, 1345214L, 29916L, 29916L, 534393L, 519878L, 525457L,
523658L, 529842L, 526134L, 534394L, 529842L, 523658L, 529554L,
526214L, 29916L, 526214L, 529554L, 479492L, 530841L, 1856482L,
514510L, 514510L, 693877L, 479492L, 29916L, 1270690L, 1856482L,
526134L, 693877L, 790707L, 520491L, 568524L, 568524L, 520491L,
1455918L, 513349L, 29916L, 534585L, 790707L, 513349L, 532803L,
530834L, 1270690L, 1455918L, 526134L, 1309724L, 1309724L, 519877L,
519877L, 533986L, 476491L, 525457L, 519877L, 519877L, 398460L,
398460L, 530834L, 534393L, 519878L, 1145089L, 476491L, 537161L,
530841L, 533986L, 29916L, 526134L, 534585L, 513028L, 513028L,
1145089L, 537161L, 532803L, 534394L, 273572L, 273572L, 861460L,
861460L, 216294L, 216294L, 230683L, 1365760L, 230683L, 310759L,
1521962L, 1521962L, 310759L, 1365760L, 1535243L, 1247561L, 1535243L,
1247561L, 230658L, 230658L, 1277451L, 1277451L, 1428056L, 1428056L,
1140384L, 46083L, 1140384L, 1343106L), link = c(90L, 90L, 90L,
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L,
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 389L,
389L, 389L, 389L, 389L, 389L, 389L, 389L, 389L, 389L, 389L, 389L,
389L, 389L, 389L, 389L, 389L, 389L, 389L, 389L, 451L, 451L, 451L,
451L, 451L, 451L, 451L, 451L, 480L, 480L, 480L, 480L, 480L, 480L,
480L, 480L, 480L, 480L, 578L, 578L, 578L, 578L, 578L, 578L, 578L,
578L, 578L, 578L, 578L, 578L, 578L, 578L, 662L, 662L, 662L, 662L,
662L, 662L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 774L, 774L,
774L, 774L, 774L, 774L, 774L, 774L, 859L, 859L, 859L, 859L, 859L,
859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L,
859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L,
859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L,
859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L,
859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L,
859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L,
859L, 927L, 927L, 927L, 927L, 927L, 927L, 927L, 927L, 927L, 927L,
927L, 927L, 927L, 927L, 927L, 927L, 927L, 927L, 927L, 927L, 927L,
927L, 987L, 987L, 988L, 988L, 988L, 1277L), count = c(1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1)), row.names = c(18798L, 64777L, 64783L, 90025L, 90030L,
102868L, 105834L, 108690L, 111727L, 118283L, 124349L, 125700L,
129642L, 135888L, 142577L, 148772L, 161264L, 161590L, 182778L,
187946L, 193712L, 211483L, 213953L, 220930L, 220932L, 252098L,
252362L, 284709L, 24007L, 27759L, 35618L, 45777L, 57274L, 97498L,
122488L, 131443L, 164666L, 193274L, 202313L, 202319L, 208399L,
237611L, 255705L, 275635L, 288938L, 316125L, 328641L, 334960L,
42227L, 44153L, 77374L, 90336L, 227678L, 245970L, 247907L, 248400L,
6850L, 39423L, 56892L, 165451L, 188728L, 196734L, 232209L, 279294L,
318618L, 320203L, 39374L, 52544L, 65925L, 92485L, 93136L, 100641L,
102349L, 135630L, 210380L, 215004L, 263248L, 264622L, 286884L,
287214L, 30294L, 55175L, 147465L, 274669L, 309732L, 318235L,
5646L, 20075L, 20529L, 22040L, 28176L, 31997L, 40252L, 41570L,
50757L, 51465L, 53497L, 54091L, 54830L, 55211L, 57389L, 61972L,
64148L, 65630L, 67926L, 73590L, 79237L, 80209L, 81961L, 83619L,
84034L, 87938L, 88723L, 100516L, 101524L, 104339L, 105567L, 108951L,
109580L, 110436L, 111056L, 111525L, 120134L, 121493L, 124350L,
125721L, 126499L, 129085L, 134769L, 137553L, 137562L, 142843L,
143218L, 143719L, 145566L, 145897L, 147872L, 151431L, 160891L,
169439L, 169951L, 172179L, 182269L, 182796L, 192084L, 194128L,
200320L, 209292L, 210580L, 210957L, 217800L, 226596L, 227622L,
228226L, 233050L, 234180L, 238184L, 239554L, 239746L, 241169L,
243114L, 255350L, 256150L, 265478L, 267279L, 268878L, 271245L,
273444L, 273513L, 273515L, 274788L, 278257L, 281213L, 283103L,
285741L, 288499L, 293964L, 294807L, 296677L, 299364L, 300811L,
301489L, 304733L, 306468L, 307953L, 322532L, 322917L, 324007L,
324134L, 329621L, 329788L, 331476L, 16560L, 79874L, 79878L, 198570L,
198576L, 206594L, 227352L, 292291L, 33304L, 33809L, 37031L, 42365L,
47741L, 53329L, 54310L, 55545L, 56255L, 62460L, 63930L, 75298L,
79478L, 89112L, 90807L, 98845L, 111205L, 119068L, 126025L, 134327L,
134337L, 136437L, 136711L, 149242L, 149320L, 158130L, 158789L,
159131L, 160368L, 177328L, 177392L, 177394L, 179845L, 180260L,
181812L, 183400L, 184268L, 184922L, 185978L, 191177L, 193860L,
201573L, 202492L, 212365L, 240333L, 242817L, 246833L, 246834L,
249842L, 250280L, 254468L, 262163L, 262164L, 263107L, 263117L,
272463L, 274866L, 279549L, 282270L, 286442L, 286606L, 287265L,
292441L, 293100L, 298081L, 308952L, 312468L, 312471L, 314309L,
317028L, 334227L, 336208L, 17419L, 19144L, 55246L, 55251L, 70799L,
73085L, 154041L, 172793L, 173296L, 175721L, 196355L, 206048L,
209794L, 216742L, 274263L, 285199L, 287908L, 302276L, 330230L,
330233L, 335274L, 335275L, 81402L, 308426L, 71000L, 255248L,
280759L, 10158L), class = "data.frame")
可能的输出:
time type vehicle_id link count
18798 23707.0 vehicle enters traffic 1267069 90 0 #start point
64777 31209.0 vehicle leaves traffic 810534 90 1 #+1
64783 31210.0 vehicle enters traffic 810534 90 0 #-1
90025 36230.0 vehicle leaves traffic 51825 90 1
90030 36231.0 vehicle enters traffic 51825 90 0
102868 38925.0 vehicle leaves traffic 1326473 90 1
105834 39583.0 vehicle leaves traffic 1199672 90 2 #here as well 1+1 =2
108690 40198.0 vehicle leaves traffic 1111105 90 3 #2+1 =3
111727 40818.0 vehicle enters traffic 1111105 90 2 #3-1 =2
118283 41974.0 vehicle leaves traffic 532654 90 3
124349 42895.0 vehicle enters traffic 532654 90 2
125700 43099.0 vehicle leaves traffic 1267069 90 3
129642 43683.0 vehicle enters traffic 1199672 90 2
135888 44645.0 vehicle leaves traffic 1398907 90 3
142577 45730.0 vehicle enters traffic 1398907 90 2
148772 46785.0 vehicle leaves traffic 1239391 90 3
161264 48846.0 vehicle enters traffic 1239391 90 2
161590 48905.0 vehicle enters traffic 1326473 90 1
182778 52790.0 vehicle leaves traffic 46491 90 2
最终我想找到每个链接的最大计数。但这可以在另一个步骤中完成,并且不需要成为解决方案的一部分,也许它有助于澄清问题。
最佳答案
我想这就是你想要的:
df %>%
arrange(link, time) %>%
group_by(link) %>%
mutate(vehicles_entered_traffic = cumsum(type == "vehicle enters traffic")
, vehicles_left_traffic = cumsum(type == "vehicle leaves traffic")
, count = count[1] + vehicles_left_traffic - vehicles_entered_traffic)
关于r - 如何根据条件和上面的行来操作行的值?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62678318/
我正在努力处理查询的 WHERE 部分。查询本身包含一个基于两个表中都存在的 ID 的 LEFT JOIN。但是,我要求 where 语句仅返回其中一列中存在的最大单个结果。目前我返回连接中的所有值,
我有这个代码来改变文件系统的大小。问题是,即使满足 if 条件,它也不会进入 if 条件,而我根本没有检查 if 条件。它直接进入 else 条件。 运行代码后的结果 post-install-ray
假设我有一个包含 2 列的 Excel 表格:单元格 A1 到 A10 中的日期和 B1 到 B10 中的值。 我想对五月日期的所有值求和。我有3种可能性: {=SUM((MONTH(A1:A10)=
伪代码: SELECT * FROM 'table' WHERE ('date' row.date 或 ,我们在Stack Overflow上找到一个类似的问题: https://stackove
我有下面这行代码做一个简单的查询 if ($this->fulfilled) $criteria->addCondition('fulfilled ' . (($this->fulfilled
如果在数据库中找到用户输入的键,我将尝试显示“表”中的数据。目前我已将其设置为让数据库检查 key 是否存在,如下所示: //Select all from table if a key entry
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 5 年前。 Improve th
在MYSQL中可以吗 一共有三个表 任务(task_id、task_status、...) tasks_assigned_to(ta_id、task_id、user_id) task_suggeste
我想先根据用户的状态然后根据用户名来排序我的 sql 请求。该状态由 user_type 列设置: 1=活跃,2=不活跃,3=创始人。 我会使用此请求来执行此操作,但它不起作用,因为我想在“活跃”成员
下面两个函数中最专业的代码风格是什么? 如果函数变得更复杂和更大,例如有 20 个检查怎么办? 注意:每次检查后我都需要做一些事情,所以我不能将所有内容连接到一个 if 语句中,例如: if (veh
我在 C# 项目中使用 EntityFramework 6.1.3 和 SQL Server。我有两个查询,基本上应该执行相同的操作。 1. Exams.GroupBy(x=>x.SubjectID)
我试图在 case when 语句中放入两个条件,但我在 postgresql 中遇到语法错误 case when condition 1 and condition 2 then X else Y
我正在构建一个连接多个表的查询,一个表 prodRecipe 将包含某些行的数据,但不是全部,但是 tmp_inv1 将包含所有行的计数信息。问题是,tmp_inv1.count 取决于某个项目是否在
我有一个涉及 couples of rows which have a less-than-2-hours time-difference 的查询(~0.08333 天): SELECT mt1.*,
我有一个包含许多这样的 OR 条件的代码(工作正常)来检查其中一个值是否为空,然后我们抛出一条错误消息(所有这些都必须填写) } elsif ( !$params{'account'}
我有一个名为 spGetOrders 的存储过程,它接受一些参数:@startdate 和 @enddate。这将查询“订单”表。表中的一列称为“ClosedDate”。如果订单尚未关闭,则此列将保留
在代码中,注释部分是我需要解决的问题...有没有办法在 LINQ 中编写这样的查询?我需要这个,因为我需要根据状态进行排序。 var result = ( from contact in d
我正在尝试创建一个允许省略参数的存储过程,但如果提供了参数,则进行 AND 操作: CREATE PROCEDURE MyProcedure @LastName Varchar(30)
我正在寻找一种方法来过滤我的主机文件中的新 IP 地址。我创建了一个脚本,每次我用来自矩阵企业管理器的数据调用它时都会更新我的主机文件。它工作正常。但是我必须找到一个解决方案,只允许更新 10.XX.
所以我正在做一种 slider ,当它完全向下时隐藏向下按钮,反之亦然,当向上按钮隐藏时,我遇到了问题。 var amount = $('slide').attr('number'); $('span
我是一名优秀的程序员,十分优秀!