gpt4 book ai didi

r - 如何根据条件和上面的行来操作行的值?

转载 作者:行者123 更新时间:2023-12-02 19:23:42 25 4
gpt4 key购买 nike

我有一个 df,我想按链接对其进行分组,并按时间对其进行排序。然后,每次 type == 'vehicle Leaves Traffic' 时,count 列中的单元格应在前一行中的单元格值的基础上添加 +1。如果type == '车辆进入交通',则应从前一行中扣除 1。

需要澄清的是,不应更改前一行的值,而是应基于前一行的值更改该行的值。

这是我的方法,但我得到的只是 0、1 和 2。我预计某些链接会有更高的值。

parking_min <- cars %>% 
group_by(link)%>%
dplyr::mutate(count = if_else(type == 'vehicle leaves traffic', lag(count, n=1,order_by=time)+1,lag(count))) %>%
dplyr::mutate(count = if_else(type == 'vehicle enters traffic',lag(count, n=1, order_by=time)-1,lag(count)))

这是我的数据:

structure(list(time = c("23707.0", "31209.0", "31210.0", "36230.0", 
"36231.0", "38925.0", "39583.0", "40198.0", "40818.0", "41974.0",
"42895.0", "43099.0", "43683.0", "44645.0", "45730.0", "46785.0",
"48846.0", "48905.0", "52790.0", "53829.0", "55021.0", "58240.0",
"58635.0", "59682.0", "59683.0", "63740.0", "63776.0", "68607.0",
"24607.0", "25218.0", "26442.0", "28004.0", "29884.0", "37750.0",
"42623.0", "43965.0", "49426.0", "54925.0", "56688.0", "56689.0",
"57738.0", "61900.0", "64221.0", "67065.0", "69404.0", "77454.0",
"83588.0", "89601.0", "27452.0", "27743.0", "33598.0", "36297.0",
"60604.0", "62940.0", "63184.0", "63250.0", "20911.0", "27013.0",
"29815.0", "49550.0", "53991.0", "55620.0", "61200.0", "67672.0",
"78558.0", "79245.0", "27006.0", "29085.0", "31411.0", "36747.0",
"36877.0", "38434.0", "38807.0", "44607.0", "58068.0", "58800.0",
"65236.0", "65431.0", "69013.0", "69072.0", "25609.0", "29520.0",
"46559.0", "66916.0", "74904.0", "78407.0", "20445.0", "23938.0",
"24017.0", "24281.0", "25283.0", "25873.0", "27137.0", "27342.0",
"28790.0", "28910.0", "29241.0", "29345.0", "29465.0", "29525.0",
"29909.0", "30719.0", "31092.0", "31356.0", "31786.0", "32829.0",
"33966.0", "34175.0", "34545.0", "34888.0", "34977.0", "35775.0",
"35950.0", "38409.0", "38636.0", "39259.0", "39527.0", "40256.0",
"40385.0", "40564.0", "40691.0", "40774.0", "42271.0", "42469.0",
"42895.0", "43103.0", "43223.0", "43599.0", "44476.0", "44903.0",
"44904.0", "45774.0", "45834.0", "45915.0", "46230.0", "46287.0",
"46626.0", "47215.0", "48784.0", "50266.0", "50361.0", "50763.0",
"52685.0", "52793.0", "54688.0", "55105.0", "56310.0", "57885.0",
"58093.0", "58153.0", "59223.0", "60460.0", "60597.0", "60676.0",
"61307.0", "61457.0", "61974.0", "62141.0", "62165.0", "62347.0",
"62591.0", "64175.0", "64280.0", "65555.0", "65808.0", "66038.0",
"66391.0", "66723.0", "66735.0", "66736.0", "66933.0", "67502.0",
"67989.0", "68322.0", "68785.0", "69318.0", "70450.0", "70634.0",
"71069.0", "71741.0", "72121.0", "72292.0", "73236.0", "73775.0",
"74280.0", "80298.0", "80458.0", "80976.0", "81035.0", "84189.0",
"84302.0", "85602.0", "23296.0", "34106.0", "34107.0", "55975.0",
"55976.0", "57434.0", "60561.0", "70091.0", "26085.0", "26163.0",
"26654.0", "27473.0", "28303.0", "29212.0", "29380.0", "29581.0",
"29707.0", "30802.0", "31052.0", "33174.0", "34020.0", "36031.0",
"36392.0", "38037.0", "40717.0", "42099.0", "43154.0", "44413.0",
"44414.0", "44730.0", "44770.0", "46863.0", "46876.0", "48318.0",
"48435.0", "48493.0", "48700.0", "51736.0", "51747.0", "51748.0",
"52221.0", "52302.0", "52599.0", "52921.0", "53104.0", "53230.0",
"53443.0", "54494.0", "55053.0", "56555.0", "56717.0", "58381.0",
"62245.0", "62554.0", "63050.0", "63050.0", "63447.0", "63507.0",
"64054.0", "65090.0", "65090.0", "65217.0", "65218.0", "66571.0",
"66945.0", "67715.0", "68169.0", "68921.0", "68955.0", "69081.0",
"70123.0", "70263.0", "71413.0", "74609.0", "75930.0", "75931.0",
"76676.0", "77855.0", "88490.0", "92653.0", "23458.0", "23770.0",
"29531.0", "29532.0", "32320.0", "32735.0", "47644.0", "50879.0",
"50971.0", "51427.0", "55554.0", "57334.0", "57971.0", "59064.0",
"66852.0", "68689.0", "69206.0", "72502.0", "84592.0", "84593.0",
"90207.0", "90208.0", "34426.0", "74433.0", "32354.0", "64161.0",
"67914.0", "21864.0"), type = c("vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle leaves traffic", "vehicle enters traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle enters traffic",
"vehicle leaves traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic", "vehicle enters traffic", "vehicle leaves traffic",
"vehicle enters traffic"), vehicle_id = c(1267069L, 810534L,
810534L, 51825L, 51825L, 1326473L, 1199672L, 1111105L, 1111105L,
532654L, 532654L, 1267069L, 1199672L, 1398907L, 1398907L, 1239391L,
1239391L, 1326473L, 46491L, 46491L, 1179923L, 434774L, 434774L,
4205L, 4205L, 1269433L, 1179923L, 1269433L, 1454119L, 1412246L,
1310775L, 1278645L, 1533113L, 1430553L, 1430553L, 1533113L, 1533113L,
492533L, 1430553L, 1430553L, 492533L, 1278645L, 1454119L, 1533113L,
1278645L, 1310775L, 1412246L, 1278645L, 1161080L, 1290940L, 558745L,
628509L, 628509L, 1161080L, 558745L, 1290940L, 403850L, 774916L,
1530598L, 403850L, 1397256L, 3874L, 774916L, 1530598L, 1397256L,
3874L, 193835L, 1043798L, 1043798L, 1881121L, 193835L, 1221124L,
1881121L, 1221124L, 12799L, 12799L, 526654L, 2066556L, 526654L,
2066556L, 485689L, 486288L, 488147L, 486288L, 485689L, 488147L,
1925302L, 2821L, 1919641L, 2147547L, 1785664L, 1394390L, 1869032L,
1812540L, 1531804L, 1814856L, 1531804L, 2149105L, 1747951L, 1908352L,
1854886L, 1888344L, 1926462L, 1925659L, 1887358L, 1926462L, 1863281L,
1094609L, 1888344L, 1925659L, 1222534L, 2148165L, 1863281L, 2148165L,
1814856L, 1885007L, 1094609L, 1887358L, 1925302L, 1925659L, 1908352L,
1919641L, 1885007L, 1898426L, 1222534L, 2095866L, 1812540L, 1528492L,
2149105L, 1799420L, 1799420L, 1898426L, 2095866L, 1905635L, 1859644L,
1528492L, 1187619L, 1794294L, 1908352L, 1187619L, 2149105L, 1901830L,
1859644L, 1885718L, 1925659L, 4806833L, 1901830L, 1794294L, 4806833L,
2821L, 1905635L, 1785664L, 1887788L, 2149105L, 1885718L, 1912658L,
1394390L, 1457624L, 1869032L, 2147547L, 1908352L, 2064554L, 1457624L,
1902958L, 1888247L, 1888247L, 1670344L, 1898186L, 1378838L, 1378838L,
1840443L, 1747951L, 1887788L, 5259385L, 1215125L, 2064554L, 1912658L,
1887316L, 42794L, 1860654L, 1902958L, 1854886L, 5259385L, 1887316L,
1670344L, 42794L, 1921295L, 1921295L, 1860654L, 1840443L, 1898186L,
1215125L, 80518L, 1131784L, 1131784L, 1060825L, 1060825L, 80518L,
1345214L, 1345214L, 29916L, 29916L, 534393L, 519878L, 525457L,
523658L, 529842L, 526134L, 534394L, 529842L, 523658L, 529554L,
526214L, 29916L, 526214L, 529554L, 479492L, 530841L, 1856482L,
514510L, 514510L, 693877L, 479492L, 29916L, 1270690L, 1856482L,
526134L, 693877L, 790707L, 520491L, 568524L, 568524L, 520491L,
1455918L, 513349L, 29916L, 534585L, 790707L, 513349L, 532803L,
530834L, 1270690L, 1455918L, 526134L, 1309724L, 1309724L, 519877L,
519877L, 533986L, 476491L, 525457L, 519877L, 519877L, 398460L,
398460L, 530834L, 534393L, 519878L, 1145089L, 476491L, 537161L,
530841L, 533986L, 29916L, 526134L, 534585L, 513028L, 513028L,
1145089L, 537161L, 532803L, 534394L, 273572L, 273572L, 861460L,
861460L, 216294L, 216294L, 230683L, 1365760L, 230683L, 310759L,
1521962L, 1521962L, 310759L, 1365760L, 1535243L, 1247561L, 1535243L,
1247561L, 230658L, 230658L, 1277451L, 1277451L, 1428056L, 1428056L,
1140384L, 46083L, 1140384L, 1343106L), link = c(90L, 90L, 90L,
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L,
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 389L,
389L, 389L, 389L, 389L, 389L, 389L, 389L, 389L, 389L, 389L, 389L,
389L, 389L, 389L, 389L, 389L, 389L, 389L, 389L, 451L, 451L, 451L,
451L, 451L, 451L, 451L, 451L, 480L, 480L, 480L, 480L, 480L, 480L,
480L, 480L, 480L, 480L, 578L, 578L, 578L, 578L, 578L, 578L, 578L,
578L, 578L, 578L, 578L, 578L, 578L, 578L, 662L, 662L, 662L, 662L,
662L, 662L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L,
723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 723L, 774L, 774L,
774L, 774L, 774L, 774L, 774L, 774L, 859L, 859L, 859L, 859L, 859L,
859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L,
859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L,
859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L,
859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L,
859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L,
859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L, 859L,
859L, 927L, 927L, 927L, 927L, 927L, 927L, 927L, 927L, 927L, 927L,
927L, 927L, 927L, 927L, 927L, 927L, 927L, 927L, 927L, 927L, 927L,
927L, 987L, 987L, 988L, 988L, 988L, 1277L), count = c(1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1)), row.names = c(18798L, 64777L, 64783L, 90025L, 90030L,
102868L, 105834L, 108690L, 111727L, 118283L, 124349L, 125700L,
129642L, 135888L, 142577L, 148772L, 161264L, 161590L, 182778L,
187946L, 193712L, 211483L, 213953L, 220930L, 220932L, 252098L,
252362L, 284709L, 24007L, 27759L, 35618L, 45777L, 57274L, 97498L,
122488L, 131443L, 164666L, 193274L, 202313L, 202319L, 208399L,
237611L, 255705L, 275635L, 288938L, 316125L, 328641L, 334960L,
42227L, 44153L, 77374L, 90336L, 227678L, 245970L, 247907L, 248400L,
6850L, 39423L, 56892L, 165451L, 188728L, 196734L, 232209L, 279294L,
318618L, 320203L, 39374L, 52544L, 65925L, 92485L, 93136L, 100641L,
102349L, 135630L, 210380L, 215004L, 263248L, 264622L, 286884L,
287214L, 30294L, 55175L, 147465L, 274669L, 309732L, 318235L,
5646L, 20075L, 20529L, 22040L, 28176L, 31997L, 40252L, 41570L,
50757L, 51465L, 53497L, 54091L, 54830L, 55211L, 57389L, 61972L,
64148L, 65630L, 67926L, 73590L, 79237L, 80209L, 81961L, 83619L,
84034L, 87938L, 88723L, 100516L, 101524L, 104339L, 105567L, 108951L,
109580L, 110436L, 111056L, 111525L, 120134L, 121493L, 124350L,
125721L, 126499L, 129085L, 134769L, 137553L, 137562L, 142843L,
143218L, 143719L, 145566L, 145897L, 147872L, 151431L, 160891L,
169439L, 169951L, 172179L, 182269L, 182796L, 192084L, 194128L,
200320L, 209292L, 210580L, 210957L, 217800L, 226596L, 227622L,
228226L, 233050L, 234180L, 238184L, 239554L, 239746L, 241169L,
243114L, 255350L, 256150L, 265478L, 267279L, 268878L, 271245L,
273444L, 273513L, 273515L, 274788L, 278257L, 281213L, 283103L,
285741L, 288499L, 293964L, 294807L, 296677L, 299364L, 300811L,
301489L, 304733L, 306468L, 307953L, 322532L, 322917L, 324007L,
324134L, 329621L, 329788L, 331476L, 16560L, 79874L, 79878L, 198570L,
198576L, 206594L, 227352L, 292291L, 33304L, 33809L, 37031L, 42365L,
47741L, 53329L, 54310L, 55545L, 56255L, 62460L, 63930L, 75298L,
79478L, 89112L, 90807L, 98845L, 111205L, 119068L, 126025L, 134327L,
134337L, 136437L, 136711L, 149242L, 149320L, 158130L, 158789L,
159131L, 160368L, 177328L, 177392L, 177394L, 179845L, 180260L,
181812L, 183400L, 184268L, 184922L, 185978L, 191177L, 193860L,
201573L, 202492L, 212365L, 240333L, 242817L, 246833L, 246834L,
249842L, 250280L, 254468L, 262163L, 262164L, 263107L, 263117L,
272463L, 274866L, 279549L, 282270L, 286442L, 286606L, 287265L,
292441L, 293100L, 298081L, 308952L, 312468L, 312471L, 314309L,
317028L, 334227L, 336208L, 17419L, 19144L, 55246L, 55251L, 70799L,
73085L, 154041L, 172793L, 173296L, 175721L, 196355L, 206048L,
209794L, 216742L, 274263L, 285199L, 287908L, 302276L, 330230L,
330233L, 335274L, 335275L, 81402L, 308426L, 71000L, 255248L,
280759L, 10158L), class = "data.frame")

可能的输出:

          time                   type vehicle_id link count
18798 23707.0 vehicle enters traffic 1267069 90 0 #start point
64777 31209.0 vehicle leaves traffic 810534 90 1 #+1
64783 31210.0 vehicle enters traffic 810534 90 0 #-1
90025 36230.0 vehicle leaves traffic 51825 90 1
90030 36231.0 vehicle enters traffic 51825 90 0
102868 38925.0 vehicle leaves traffic 1326473 90 1
105834 39583.0 vehicle leaves traffic 1199672 90 2 #here as well 1+1 =2
108690 40198.0 vehicle leaves traffic 1111105 90 3 #2+1 =3
111727 40818.0 vehicle enters traffic 1111105 90 2 #3-1 =2
118283 41974.0 vehicle leaves traffic 532654 90 3
124349 42895.0 vehicle enters traffic 532654 90 2
125700 43099.0 vehicle leaves traffic 1267069 90 3
129642 43683.0 vehicle enters traffic 1199672 90 2
135888 44645.0 vehicle leaves traffic 1398907 90 3
142577 45730.0 vehicle enters traffic 1398907 90 2
148772 46785.0 vehicle leaves traffic 1239391 90 3
161264 48846.0 vehicle enters traffic 1239391 90 2
161590 48905.0 vehicle enters traffic 1326473 90 1
182778 52790.0 vehicle leaves traffic 46491 90 2

最终我想找到每个链接的最大计数。但这可以在另一个步骤中完成,并且不需要成为解决方案的一部分,也许它有助于澄清问题。

最佳答案

我想这就是你想要的:

df %>%
arrange(link, time) %>%
group_by(link) %>%
mutate(vehicles_entered_traffic = cumsum(type == "vehicle enters traffic")
, vehicles_left_traffic = cumsum(type == "vehicle leaves traffic")
, count = count[1] + vehicles_left_traffic - vehicles_entered_traffic)

关于r - 如何根据条件和上面的行来操作行的值?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62678318/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com