- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我是 TensorFlow 框架的新手,我正在尝试应用 TensorFlow 来预测基于泰坦尼克号数据集的幸存者:https://www.kaggle.com/c/titanic/data。
import tensorflow as tf
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
#%%
titanictrain = pd.read_csv('train.csv')
titanictest = pd.read_csv('test.csv')
df = pd.concat([titanictrain,titanictest],join='outer',keys='PassengerId',sort=False,ignore_index=True).drop(['Name'],1)
#%%
def preprocess(df):
df['Fare'].fillna(value=df.groupby('Pclass')['Fare'].transform('median'),inplace=True)
df['Fare'] = df['Fare'].map(lambda x: np.log(x) if x>0 else 0)
df['Embarked'].fillna(value=df['Embarked'].mode()[0],inplace=True)
df['CabinAlphabet'] = df['Cabin'].str[0]
categories_to_one_hot = ['Pclass','Sex','Embarked','CabinAlphabet']
df = pd.get_dummies(df,columns=categories_to_one_hot,drop_first=True)
return df
df = preprocess(df)
df = df.drop(['PassengerId','Ticket','Cabin','Survived'],1)
titanic_trainandval = df.iloc[:len(titanictrain)]
titanic_test = df.iloc[len(titanictrain):] #test after preprocessing
titanic_test.head()
# split train into training and validation set
labels = titanictrain['Survived']
y = labels.values
test = titanic_test.copy() # real test sets
print(len(test), 'test examples')
我在这里尝试对数据进行预处理:
1.Drop Name column and Do one hot coding both on the train and test set
2.为了简单起见,删除 ['PassengerId','Ticket','Cabin','Survived']。
"""# model training"""
from tensorflow.keras.layers import Input, Dense, Activation,Dropout
from tensorflow.keras.models import Model
X = titanic_trainandval.copy()
input_layer = Input(shape=(X.shape[1],))
dense_layer_1 = Dense(10, activation='relu')(input_layer)
dense_layer_2 = Dense(5, activation='relu')(dense_layer_1)
output = Dense(1, activation='softmax',name = 'predictions')(dense_layer_2)
model = Model(inputs=input_layer, outputs=output)
base_learning_rate = 0.0001
model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), optimizer=tf.keras.optimizers.Adam(lr=base_learning_rate), metrics=['acc'])
history = model.fit(X, y, batch_size=5, epochs=20, verbose=2, validation_split=0.1,shuffle = False)
submission = pd.DataFrame()
submission['PassengerId'] = titanictest['PassengerId']
然后我把训练集X放到模型中得到结果。但是,历史显示以下结果:
无论我如何改变学习率和批量大小,结果都不会改变,损失始终是'nan',基于测试集的预测也始终是'nan'。
谁能解释一下问题出在哪里并给出一些可能的解决方案?
最佳答案
乍一看,您的代码中有两个主要问题:
您的输出层必须是Dense(2, activation='softmax')
。这是因为您的问题是二元分类问题,如果您使用 softmax 生成概率,则输出 dim 必须等于类数。 (您可以将一个输出维度与 sigmoid
激活一起使用)
你必须改变你的损失函数。对于 softmax 和数字编码目标,使用 sparse_categorical_crossentropy
。 (您可以将 binary_crossentropy 与 sigmoid
一起使用,默认情况下使用 from_logits=False)
PS:确保在开始拟合之前删除原始数据中的所有 NaN
关于python - 预测 Nans 的 Tensorflow 模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62911831/
我正在使用 R 预测包拟合模型,如下所示: fit <- auto.arima(df) plot(forecast(fit,h=200)) 打印原始数据框和预测。当 df 相当大时,这
我正在尝试预测自有住房的中位数,这是一个行之有效的例子,给出了很好的结果。 https://heuristically.wordpress.com/2011/11/17/using-neural-ne
type="class"函数中的type="response"和predict有什么区别? 例如: predict(modelName, newdata=testData, type = "class
我有一个名为 Downloaded 的文件夹,其中包含经过训练的 CNN 模型必须对其进行预测的图像。 下面是导入图片的代码: import os images = [] for filename i
关于预测的快速问题。 我尝试预测的值是 0 或 1(它设置为数字,而不是因子),因此当我运行随机森林时: fit , data=trainData, ntree=50) 并预测: pred, data
使用 Python,我尝试使用历史销售数据来预测产品的 future 销售数量。我还试图预测各组产品的这些计数。 例如,我的专栏如下所示: Date Sales_count Department It
我是 R 新手,所以请帮助我了解问题所在。我试图预测一些数据,但预测函数返回的对象(这是奇怪的类(因子))包含低数据。测试集大小为 5886 obs。 160 个变量,当预测对象长度为 110 时..
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 6 年前。 Improve this qu
下面是我的神经网络代码,有 3 个输入和 1 个隐藏层和 1 个输出: #Data ds = SupervisedDataSet(3,1) myfile = open('my_file.csv','r
我正在开发一个 Web 应用程序,它具有全文搜索功能,可以正常运行。我想对此进行改进并向其添加预测/更正功能,这意味着如果用户输入错误或结果为 0,则会查询该输入的更正版本,而不是查询结果。基本上类似
我对时间序列还很陌生。 这是我正在处理的数据集: Date Price Location 0 2012-01-01 1771.0
我有许多可变长度的序列。对于这些,我想训练一个隐马尔可夫模型,稍后我想用它来预测(部分)序列的可能延续。到目前为止,我已经找到了两种使用 HMM 预测 future 的方法: 1) 幻觉延续并获得该延
我正在使用 TensorFlow 服务提供初始模型。我在 Azure Kubernetes 上这样做,所以不是通过更标准和有据可查的谷歌云。 无论如何,这一切都在起作用,但是我感到困惑的是预测作为浮点
我正在尝试使用 Amazon Forecast 进行一些测试。我现在尝试了两个不同的数据集,它们看起来像这样: 13,2013-03-31 19:25:00,93.10999 14,2013-03-3
使用 numpy ndarray大多数时候我们不需要担心内存布局的问题,因为结果并不依赖于它。 除非他们这样做。例如,考虑这种设置 3x2 矩阵对角线的稍微过度设计的方法 >>> a = np.zer
我想在同一个地 block 上用不同颜色绘制多个预测,但是,比例尺不对。我对任何其他方法持开放态度。 可重现的例子: require(forecast) # MAKING DATA data
我正在 R 中使用 GLMM,其中混合了连续变量和 calcategories 变量,并具有一些交互作用。我使用 MuMIn 中的 dredge 和 model.avg 函数来获取每个变量的效果估计。
我能够在 GUI 中成功导出分类器错误,但无法在命令行中执行此操作。有什么办法可以在命令行上完成此操作吗? 我使用的是 Weka 3.6.x。在这里,您可以右键单击模型,选择“可视化分类器错误”并从那
我想在同一个地 block 上用不同颜色绘制多个预测,但是,比例尺不对。我对任何其他方法持开放态度。 可重现的例子: require(forecast) # MAKING DATA data
我从 UCI 机器学习数据集库下载了一个巨大的文件。 (~300mb)。 有没有办法在将数据集加载到 R 内存之前预测加载数据集所需的内存? Google 搜索了很多,但我到处都能找到如何使用 R-p
我是一名优秀的程序员,十分优秀!