- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
如何优化计算大量向量的成对余弦相似度(估计适合)?
对于两个集合(A,B),需要为每个 a 和 b 生成包含向量 - 成对余弦相似度 sim(a_i, b_j)。 (余弦相似度矩阵也适合,因为它很容易从矩阵转换为成对矩阵。)
这看起来是一个常见问题,因为在计算生物学、推荐系统等中需要计算这样的距离。但我还没有找到一些合理的解决方案。
根据定义,这个问题的复杂度是 O(len_A * len_B * O(similarity_function)),因此 A 和 B 集中的 10^6 个向量往往会花费大量的运行时间
看起来,我们在这里做了很多无用的工作,因为相似性不是独立的(如果我们计算出一百万个向量的 a_i 相似度,并且 b_j 与 a_i 非常相似 - 并且我们有 900k 的 b_j 相似度)计算出的向量我们可以估计 b_j 与其余 100k 个向量的相似度)。我假设这里可以使用索引之类的东西。
感谢您的参赛作品。
python==3.6
pandas==0.25.0
scikit-learn==0.21.3
numpy==1.17.1
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
df_1 = pd.DataFrame({'object_id_1': range(10),
'feature_0': np.random.uniform(0,1,10),
'feature_1': np.random.uniform(0,1,10),
'feature_2': np.random.uniform(0,1,10),
'feature_3':np.random.uniform(0,1,10)})
df_2 = pd.DataFrame({'object_id_2': range(10,20),
'feature_0': np.random.uniform(0,1,10),
'feature_1': np.random.uniform(0,1,10),
'feature_2': np.random.uniform(0,1,10),
'feature_3':np.random.uniform(0,1,10)})
def get_similarities(df_1: pd.DataFrame, df_2: pd.DataFrame, meaningful_features:list) -> pd.DataFrame:
'''
This function generates features based similarity scores, between two groups of objects
Parameters
----------
df_1: pandas.DataFrame
DataFrame with features, and id_s of objects
df_2: pandas.DataFrame
DataFrame with features, and id_s of objects which has no id_s same to df_1
meaningful_features: list
Features columns to calculate similarity on
Returns
----------
similarities_of_objects: pandas.DataFrame
DataFrame, with columns 'object_id_1', 'object_id_2', 'similarity',
where we have features similarity, for each object_1-object_2 pair.
Similarity - symmetric.
'''
objects_1 = [] # list of all objects from df_1
objects_2 = [] # list of all objects from df_2
similarities = [] # list of scores for object_1-object_2 pairs
for object_1 in df_1['object_id_1'].unique():
features_vector_1 = df_1[df_1['object_id_1'] == object_1][meaningful_features] # object_1 features vector
for object_2 in df_2['object_id_2'].unique():
features_vector_2 = df_2[df_2['object_id_2'] == object_2][meaningful_features] # object_2 features vector
objects_1.append(object_1)
objects_2.append(object_2)
similarities.append(cosine_similarity(X = np.array(features_vector_1)
,Y = np.array(features_vector_2)).item()) # similarities of vectors
sim_o1_to_o2 = pd.DataFrame()
sim_o1_to_o2['objects_1']= objects_1
sim_o1_to_o2['objects_2']= objects_2
sim_o1_to_o2['similarity']= similarities
return sim_o1_to_o2
get_similarities(df_1,df_2, ['feature_0', 'feature_1', 'feature_2'])
最佳答案
使用Faiss
import faiss
dimension = 100
value1 = np.random.random((n, dimension)).astype('float32')
index = faiss.IndexFlatL2(d)
index.add(value1)
xq = value2
k= len(value1)
D, I = index.search(xq, k)
请注意,这里 D 是距离,I 是值的索引。
此外,value1 和 value2 只是 NumPy 数组。
PS:先安装faiss。
pip install faiss
关于python - 成对相似度/相似度矩阵计算优化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62931527/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!