- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试为我的数据集绘制线条的子集,但我似乎无法弄清楚如何让图例正常显示或使用熔化。数据集具有以下结构(实际数据集中有更多预测和日期,这只是一个示例):
Date Actual Fcst1 Fcst2 Fcst3 Fcst4
2015-01-01 500 600 700 400 450
2015-02-01 600 610 630 480 600
2015-03-01 700 234 875 754 733
.......... ... ... ... ... ...
我目前正在使用此代码:
ggplot(df, aes(x = Date)) +
geom_line(aes(y = Fcst1), color = "red", size = 1) +
geom_line(aes(y = Fcst2),
color = "blue",
size = 1
) +
geom_line(aes(y = Fcst3),
color = "green",
size = 1
) +
geom_line(aes(y = Fcst4),
color = "yellow",
size = 1
) +
geom_line(aes(y = Fcst5),
color = "purple",
size = 1
) +
geom_line(aes(y = Fcst6), color = "orange", size = 1) +
geom_line(aes(y = Actual), color = "black", size = 1.2) +
ggtitle(label = "Actuals vs 2015 Forecasts", subtitle = fname) +
ylab("Balance") +
scale_y_continuous(labels = comma)
无论如何,即使我尝试使用熔化,我也无法让图例正确显示。有人可以帮我吗?
最佳答案
ggplot2
更喜欢长格式的内容,并且倾向于“惩罚”(使困难)像您现在正在做的事情。让我们 reshape 一下(我将使用 tidyr::pivot_longer
,其他的也可以)。
library(ggplot2)
ggplot(tidyr::pivot_longer(df, Fcst1:Fcst4),
aes(Date, value, color = name)) +
geom_line()
正如您所知,在 aes
主题中使用 color=
会相应地改变颜色。如果您想控制颜色,有许多主题可用(例如,viridis
和许多带有色盲配置文件的主题),但手动操作是使用 scale_color_manual
完成的,我下面将进行演示。最后,我将调整名称等。
ggplot(tidyr::pivot_longer(df, Actual:Fcst4, names_to = "Forecast", names_prefix = "Fcst"),
aes(Date, value, color = Forecast)) +
geom_line(size = 1) +
scale_color_manual(values = c("Actual" = "black", "1" = "red", "2" = "blue",
"3" = "green", "4" = "yellow", "5" = "purple",
"6" = "orange")) +
ggtitle(label = "Actuals vs 2015 Forecasts", subtitle = "(unk filename)") +
ylab("Balance") +
scale_y_continuous(labels = scales::comma)
手动颜色不必完美匹配,正如您在定义但未使用的 5
中看到的那样(基于您的数据样本)。 values=
命名向量中缺少的颜色将从图中删除(并带有警告)。
最后,一个常见问题是对图例中的组件进行排序。这可以通过 factor
来完成:
df_long <- tidyr::pivot_longer(df, Actual:Fcst4, names_to = "Forecast", names_prefix = "Fcst")
df_long$Forecast <- relevel(factor(df_long$Forecast), "Actual")
ggplot(df_long, aes(Date, value, color = Forecast)) +
geom_line(size = 1) +
scale_color_manual(values = c("Actual" = "black", "1" = "red", "2" = "blue",
"3" = "green", "4" = "yellow", "5" = "purple",
"6" = "orange")) +
ggtitle(label = "Actuals vs 2015 Forecasts", subtitle = "(unk filename)") +
ylab("Balance") +
scale_y_continuous(labels = scales::comma)
我使用 stats::relevel
将一个因素“移到前面”,否则它往往是按字母顺序排列的(如上面第二张图所示)。有很多用于处理因子的工具,forcats
软件包是一种流行的工具(尤其是在 tidyverse 用户中)。
此处理可以轻松地在 dplyr
管道中进行。
既然您提到一次绘制批量预测,这里有几种方法。我将通过将 Fcst
列复制到另一组 4 列中来扩充数据:
df <- cbind(df, setNames(df[,3:6], paste0("Fcst", 5:8)))
df_long <- tidyr::pivot_longer(df, Actual:Fcst8, names_to = "Forecast", names_prefix = "Fcst")
df_long$Forecast <- relevel(factor(df_long$Forecast), "Actual")
为了代码简洁,我将“简化”情节,但主题仍然如上所示。
单独的绘图,一次过滤一个并绘制它。
ggplot(df_long[df_long$Forecast %in% c("Actual", "1", "3", "5", "7"),],
aes(Date, value, color = Forecast)) +
geom_line(size = 1)
分面。我将在这个示例中展示一种强制方法来执行此操作,然后是一种更灵活(可能)的方法。我在这里使用 dplyr 是因为它使一些操作更容易查看和理解(一旦您习惯了 dplyr 式语法)。 (我经常发现保持控制线“实际”与其他控制线不同的颜色/厚度有助于巩固各个方面的比较。交给你了。)
library(dplyr)
df_rest <- df_long %>%
filter(! Forecast == "Actual") %>%
mutate(grp = cut(as.integer(as.character(Forecast)), c(0, 5, 9), labels = FALSE))
df_combined <- df_long %>%
filter(Forecast == "Actual") %>%
select(-grp) %>%
crossing(., unique(select(df_rest, grp))) %>%
bind_rows(df_rest)
ggplot(df_combined, aes(Date, value, color = Forecast)) +
geom_line(size = 1) +
facet_grid(grp ~ .)
分面,但具有一组更易于维护的分面。我将使用一个简单的 data.frame
来控制哪些行包含在哪个 $grp
中。这使得(在我看来)更容易“挑选”特定方面的特定行。
grps <- tibble::tribble(
~grp, ~Forecast
,1, "Actual"
,1, "1"
,1, "3"
,1, "5"
,2, "Actual"
,2, "2"
,2, "4"
,2, "6"
,2, "7"
,2, "8"
)
ggplot(left_join(df_long, grps, by = "Forecast"),
aes(Date, value, color = Forecast)) +
geom_line(size = 1) +
facet_grid(grp ~ .)
在本例中,我使用 tribble
只是为了更容易看出哪个组合在一起;任何data.frame
都可以工作。我还证明 $grp
大小不需要相等,可以包含您想要的任何内容。
使用上面 #3 中的框架进行连接,然后对它们进行过滤,如下所示
left_join(df_long, grps, by = "Forecase") %>%
filter(grp == 1) %>%
ggplot(., aes(Date, value, color = Forecast)) +
geom_line(size = 1) +
facet_grid(grp ~ .)
关于r - ggplot 缺少图例,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63233362/
前 R 用户,我曾经通过 ggplotly() 函数广泛地结合 ggplot 和 plot_ly 库来显示数据。 刚到 Python 时,我看到 ggplot 库可用,但在与 plotly 的简单组合
ggplotly 使用 ggplot 删除 geom_line 图的图例。 见例如以下: library(plotly) g % ggplotly() 关于r - ggplotly 从 gg
我有一个 ggplot我试图以非常简约的外观制作线图的问题。我已经摆脱了图例,转而使用每行右侧的文本标签。如果标签不是那么长,它可能不会那么明显,但如果网格线停在最大 x 值(在这种情况下,在 201
我想使用相同的 ggplot 代码以我的数据框中的数字为条件生成 8 个不同的数字。通常我会使用 facet_grid,但在这种情况下,我希望最终得到每个单独数字的 pdf。例如,我想要这里的每一行一
当我在 ggplot 上使用 geom_text 时,与 ggplot 的“填充”选项发生冲突。 这是问题的一个明显例子: library(ggplot2) a=ChickWeight str(a)
是否可以结合使用 ggplot ly 和拼凑而成的ggplot? 例子 这将并排显示两个图 library(ggplot2) library(plotly) library(patchwork) a
我想绘制一个图表,其中 y 轴以百分比表示: p = ggplot(test, aes(x=creation_date, y=value, color=type)) + geom_line(aes
如何去除ggsave中的白边距? 我的问题和Remove white space (i.e., margins) ggplot2 in R一模一样。然而,那里的答案对我来说并不理想。我不想对固定但未知
我有一个带有一些文本层的条形图,在 ggplot 库中一切正常,但现在我想添加一些与 ggplotly 的交互性,但它无法显示文本层 我更新了所有软件包但问题仍然存在 df = read.table(
当我尝试在 ggplot 中为我的箱线图设置自定义宽度时,它工作正常: p=ggplot(iris, aes(x = Species,y=Sepal.Length )) + geom_boxplot(
我正在尝试为 ggplot 密度创建一个图例,将一个组与所有组进行比较。使用此示例 - R: Custom Legend for Multiple Layer ggplot - 我可以使用下面的代码成
所以我试图在一个多面的 ggplot 上编辑 y 值,因为我在编织时在情节上有几个不准确之处。我对 R 和 R Markdown 很陌生,所以我不太明白为什么,例如,美国的 GDP PPP 在美元金额
我需要在 python 条形图的 x 轴 ggplot 上格式化日期。 我该怎么做? 最佳答案 使用 scale_x_date() 格式化 x 轴上的日期。 p = ggplot(aes(x='dat
我想使用 ggplotly因为它的副作用相同ggplot甚至graphics做。我的意思是当我 knitr::knit或 rmarkdown::render我期望的 Rmd 文档 print(obj)
我在下面有一个简单的应用程序,它显示了一个 ggplot。 ggplot 在控制台中生成警告(见底部图片)。我想捕获警告,并将其显示在应用程序的情节下方。 这是我的代码: library(shiny)
如果显示的基本数据集很大(下面的示例工作代码),则在 Shiny 的应用程序中向/从 ggplot 添加/删除图层可能需要一段时间。 问题是: 有没有办法缓存 ggplot(基本图)并添加/删除/修改
我正在组合 ggplot 的多个绘图,使用网格视口(viewport),这是必要的(我相信),因为我想旋转绘图,这在标准 ggplot 中是不可能的,甚至可能是 gridExtra 包。 我想在两个图
我可以使用 lattice 在 R 中绘制相对频率直方图包裹: a <- runif(100) library(lattice) histogram(a) 我想在 ggplot 中获得相同的图形.我试
我需要重新安装 R,但我现在遇到了 ggplot 的一个小问题。我确信有一个简单的解决方案,我感谢所有提示! 我经常使用堆叠面积图,通常我通过定义因子水平并以相反的顺序绘制来获得所需的堆叠和图例顺序。
新的并且坚持使用ggplot: 我有以下数据: tribe rho preference_watermass 1 Luna2 -1.000 hypolimnic 2 OP10I-A1
我是一名优秀的程序员,十分优秀!