- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个有 11 列数据的 Pandas 。我想通过测试将每一列与其他每一列进行比较(见下文)。如何创建一个循环来自动比较所有列,而无需为每个列对组合手动编写代码?
from scipy.stats import ttest_ind
data1 = [0.873, 2.817, 0.121, -0.945, -0.055, -1.436, 0.360, -1.478, -1.637, -1.869]
data2 = [1.142, -0.432, -0.938, -0.729, -0.846, -0.157, 0.500, 1.183, -1.075, -0.169]
stat, p = ttest_ind(data1, data2)
print('stat=%.3f, p=%.3f' % (stat, p))
if p > 0.05:
print('Probably the same distribution')
else:
print('Probably different distributions')
是否可以用矩阵或图形方式显示结果?提前致谢!
最佳答案
让我们使用嵌套字典理解来计算每个可能的列组合的t-test
,然后从嵌套字典初始化一个新的数据帧以创建格式良好的矩阵表示:
dct = {x: {y: 's={:.2f}, p={:.2f}'.format(
*ttest_ind(df[x], df[y])) for y in df} for x in df}
mat = pd.DataFrame(dct)
print(mat)
data1 data2
data1 s=0.00, p=1.00 s=0.33, p=0.75
data2 s=-0.33, p=0.75 s=0.00, p=1.00
如果您需要仅包含 p 值
的矩阵:
dct = {x: {y: ttest_ind(df[x], df[y]).pvalue for y in df} for x in df}
mat = pd.DataFrame(dct)
print(mat)
data1 data2
data1 1.00000 0.74847
data2 0.74847 1.00000
要计算所有 p 值
的平均值,请使用:
mat.to_numpy().mean()
0.8742349436807844
注意:df
是包含列 data1
、data2
...
关于python - 用于比较多个数据列的循环 T 检验,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/65456028/
这是我第一次提问,对于任何格式问题或任何让我难以回答的问题,我深表歉意。请让我知道我需要添加什么才能回答问题。 我正在尝试比较 2 个不相等的组大小(一个 ~ 97,另一个 ~ 714)之间的差异。差
这个问题在这里已经有了答案: dplyr summarize across ttest (1 个回答) 关闭 5 个月前。 我有这样的数据框 X1 X2 X3 X4 X5 class 1 1
我正在尝试对数据框中的两个数据子集运行 wilcox.test()。它们的长度不相等(48 对 260)。我想看看活橡树和水橡树的 dbh(胸高直径)是否存在差异。 Pine_stand 并收到该错
我有一个带有两个级别的因子列和许多数字列的数据框。我想按因子列拆分数据帧并对列对进行 t 检验。 使用示例数据集 Puromycin 我希望结果看起来像这样: Variable Treated
我尝试对数据框的所有列(一次两列)进行 t 检验,并仅提取 p 值。这是我想出的: for (i in c(5:525) ) { t_test_p.value =sapply( Data[5:525]
我有一个有 11 列数据的 Pandas 。我想通过测试将每一列与其他每一列进行比较(见下文)。如何创建一个循环来自动比较所有列,而无需为每个列对组合手动编写代码? from scipy.stats
我有一些数据,如下所示: # Groups: date [4] date data 1 2021-01-31 2 20
这就是我的数据的样子: > dput(data) structure(list(Name = c("Mark", "Tere", "Marcus", "Heidi", "Georg", "Tieme"
我有一个有 11 列数据的 Pandas 。我想通过测试将每一列与其他每一列进行比较(见下文)。如何创建一个循环来自动比较所有列,而无需为每个列对组合手动编写代码? from scipy.stats
我有一些数据,如下所示: # Groups: date [4] date data 1 2021-01-31 2 20
所以我有一些股票价格数据,我想测试价格是否遵循对数正态分布。我的代码如下: import scipy.stats as stats print(stats.kstest(df['DJIA'], "lo
我想对我的固定效应回归系数进行简单的联合 Wald 检验,但我想将限制设置为非零值。更具体地说,我想测试:H0: ai=0 and b=1 for every i或者基本上,是否从固定效应模型 (ai
我正在尝试进行双样本 t 检验,以检查两个数据集之间的均值是否存在显着差异。 我有两个数据集,每个数据集有 5 个试验,每个试验有 3 个特征。每个 Trial 都有不同的唯一标签,但 3 个特征(X
考虑以下虚拟数据: x <- rnorm(15,mean = 3,sd = 1) y <- rnorm(15,mean = 3,sd = 1) xy <- c(x,y) factor <- c(rep
我是一名计算机科学专业的学生,我正在自学算法类(class)。 在类(class)中我看到了这个问题: Show an efficient randomized algorithm to fact
我想使用拟合我的数据的 f 检验来比较两个模型。对于每个模型,我都执行了蒙特卡洛模拟,为每个模型参数和均方根拟合误差提供了统计估计。我想在 R 中使用 f-test 来确定哪个模型更可取。 最佳答案
我很难让 ks.test 使用卡方分布式数据: > chi10 ks.test(chi10, dchisq, df=10) One-sample Kolmogorov-Smirnov tes
我试图在 R 中复制 SPSS 的线性判别分析输出,但我很难找到执行 m-box 测试的方法。 我唯一找到的是一些发布在论坛上的代码,用于手动实现该过程,但我想知道语言本身是否已经包含用于此目的的任何
我有以下数据框: structure(list(test1 = c(0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1), test2 = c(0, 0, 1, 1, 0,
标准 stats::kruskal.test 模块允许计算数据集上的 kruskal-wallis 测试: >>> data(diamonds) >>> kruskal.test(price~cara
我是一名优秀的程序员,十分优秀!