- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
大家好,我在kerberos环境中运行Spark(2.4.4),我编写了一个代码来通过Spark查询Hive Table。我也在spark-submit命令中执行kinit,但是我仍然面对
java.io.IOException:
org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS];
这是我的代码:-
@transient lazy val spark: SparkSession = getSparkSession()
def getSparkSession(): SparkSession = {
log.info("Creating spark session")
var sparkBuilder: SparkSession.Builder = SparkSession.builder().
master("local[*]").
appName("Query Hive Via Spark").
config("hive.exec.scratchdir", "/tmp/hive").enableHiveSupport().
config("hive.exec.dynamic.partition", "true").
config("hive.exec.dynamic.partition.mode", "nonstrict").
config("hive.exec.max.dynamic.partitions", "1000")
@transient lazy val spark: SparkSession = sparkBuilder.getOrCreate()
registerUdfs(spark)
spark.sparkContext.setLogLevel(logLevel)
spark
}
通过Spark Sql访问Hive表的代码。
val resultDF= spark.sql(s"SELECT count(*) AS cnt FROM brl_in_cash.cash_in_incoming_data WHERE insert_date='20200821'")
resultDF.printSchema()
resultDF.show(false)
我正在执行spark-submit的shell脚本,我正在执行kinit并传递--principal $ KERBEROS_PRINCIPAL --keytab $ KERBEROS_KEYTAB。
spark-submit --master yarn --deploy-mode cluster \
--verbose \
--name ${appName} \
--principal $KERBEROS_PRINCIPAL \
--keytab $KERBEROS_KEYTAB \
--driver-memory 4g \
--executor-memory 4g \
--executor-cores 2 \
--files ${hiveSite.xml} \
--conf spark.hadoop.yarn.timeline-service.enabled=false \
--conf spark.hadoop.yarn.client.failover-proxy-provider=org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider \
--conf spark.security.credentials.EsServiceCredentialProvider.enabled=false \
--class com.dpk.hive.HiveViaSpark "${jarPath}"
错误日志:
20/08/26 13:34:17 INFO TezClient: Failed to retrieve AM Status via proxy
com.google.protobuf.ServiceException: java.io.IOException: Failed on local exception: java.io.IOException: org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS]; Host Details : local host is: "dfghcv012.global.xyz.com/10.7.1.52"; destination host is: "dfghcv013.global.xyz.com":43890;
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:243)
at com.sun.proxy.$Proxy36.getAMStatus(Unknown Source)
at org.apache.tez.client.TezClient.getAppMasterStatus(TezClient.java:618)
at org.apache.tez.client.TezClient.waitTillReady(TezClient.java:697)
at org.apache.hadoop.hive.ql.exec.tez.TezSessionState.open(TezSessionState.java:205)
at org.apache.hadoop.hive.ql.exec.tez.TezSessionState.open(TezSessionState.java:116)
at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:532)
at org.apache.spark.sql.hive.client.HiveClientImpl.newState(HiveClientImpl.scala:183)
at org.apache.spark.sql.hive.client.HiveClientImpl.<init>(HiveClientImpl.scala:117)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:422)
at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:271)
at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:384)
at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:286)
at org.apache.spark.sql.hive.HiveExternalCatalog.client$lzycompute(HiveExternalCatalog.scala:66)
at org.apache.spark.sql.hive.HiveExternalCatalog.client(HiveExternalCatalog.scala:65)
at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply$mcZ$sp(HiveExternalCatalog.scala:215)
at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:215)
at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:215)
at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:97)
at org.apache.spark.sql.hive.HiveExternalCatalog.databaseExists(HiveExternalCatalog.scala:214)
at org.apache.spark.sql.internal.SharedState.externalCatalog$lzycompute(SharedState.scala:114)
at org.apache.spark.sql.internal.SharedState.externalCatalog(SharedState.scala:102)
at org.apache.spark.sql.internal.SharedState.globalTempViewManager$lzycompute(SharedState.scala:141)
at org.apache.spark.sql.internal.SharedState.globalTempViewManager(SharedState.scala:136)
at org.apache.spark.sql.hive.HiveSessionStateBuilder$$anonfun$2.apply(HiveSessionStateBuilder.scala:55)
at org.apache.spark.sql.hive.HiveSessionStateBuilder$$anonfun$2.apply(HiveSessionStateBuilder.scala:55)
at org.apache.spark.sql.catalyst.catalog.SessionCatalog.globalTempViewManager$lzycompute(SessionCatalog.scala:91)
at org.apache.spark.sql.catalyst.catalog.SessionCatalog.globalTempViewManager(SessionCatalog.scala:91)
at org.apache.spark.sql.catalyst.catalog.SessionCatalog.isTemporaryTable(SessionCatalog.scala:736)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.isRunningDirectlyOnFiles(Analyzer.scala:747)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.resolveRelation(Analyzer.scala:681)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:713)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:706)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$apply$1.apply(AnalysisHelper.scala:90)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$apply$1.apply(AnalysisHelper.scala:90)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:89)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:194)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$class.resolveOperatorsUp(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:329)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:327)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:87)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:194)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$class.resolveOperatorsUp(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:329)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:327)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:87)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:194)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$class.resolveOperatorsUp(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:706)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:652)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:87)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:84)
at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
at scala.collection.immutable.List.foldLeft(List.scala:84)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:84)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:76)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:76)
at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:127)
at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:121)
at org.apache.spark.sql.catalyst.analysis.Analyzer$$anonfun$executeAndCheck$1.apply(Analyzer.scala:106)
at org.apache.spark.sql.catalyst.analysis.Analyzer$$anonfun$executeAndCheck$1.apply(Analyzer.scala:105)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:201)
at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:105)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:57)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:55)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:47)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:78)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:642)
at com.sc.sdm.rt.oa.recon.TestConnection$.main(TestConnection.scala:34)
at com.sc.sdm.rt.oa.recon.TestConnection.main(TestConnection.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:684)
Caused by: java.io.IOException: Failed on local exception: java.io.IOException: org.apache.hadoop.security.AccessControlException: Client cannot authenticate via:[TOKEN, KERBEROS]; Host Details : local host is: "dfghcv012.global.xyz.com/10.7.1.52"; destination host is: "dfghcv013.global.xyz.com":43890;
at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:776)
at org.apache.hadoop.ipc.Client.call(Client.java:1479)
at org.apache.hadoop.ipc.Client.call(Client.java:1412)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:229)
... 91 more
任何帮助表示赞赏!
最佳答案
我能够解决这个问题。
我删除了
--files hive-site.xml
增加了 Spark 配置
--conf spark.security.credentials.hadoopfs.enabled=true
上述变化对我有用。
关于apache-spark - 在Kerberos环境中无法通过Spark访问Hive:客户端无法通过以下方式进行身份验证:[TOKEN,KERBEROS],我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63596797/
我正在使用SQL Server 2008 R2,并且想创建一个触发器。 对于每个添加(仅添加),将像这样更新一列: ABC-CurrentYear-AutoIncrementCode 例子: ABC-
是否可以在显示最终一致性的数据存储中创建/存储用户帐户? 似乎不可能在没有一堆架构复杂性的情况下管理帐户创建,以避免可能发生具有相同 UID(例如电子邮件地址)的两个帐户的情况? 最终一致性存储的用户
您好, 我有一个带有 Identity 的 .NetCore MVC APP并使用 this指导我能够创建自定义用户验证器。 public class UserDomainValidator : IU
这与以下问题相同:HiLo or identity? 我们以本站的数据库为例。 假设该站点具有以下表格: 帖子。 投票。 注释。 使用它的最佳策略是什么: 身份 - 这是更常见的。 或者 HiLo -
我想将 Blazor Server 与 ASP.NET Identity 一起使用。但我需要使用 PostgreSQL 作为用户/角色存储,因为它在 AWS 中。 它不使用 EF,这是我需要的。 我创
我正在开发一个 .NET 应用程序,它可以使用 Graph API 代表用户发送电子邮件。 提示用户对应用程序进行授权;然后使用获取的访问 token 来调用 Graph API。刷新 token 用
我使用 ASP.NET 身份和 ClaimsIdentity 来验证我的用户。当用户通过身份验证时,属性 User.Identity 包含一个 ClaimsIdentity 实例。 但是,在登录请求期
所以我在两台机器上都安装了 CYGWIN。 如果我这样做,它会起作用: ssh -i desktop_rsa root@remoteserver 这需要我输入密码 ssh root@remoteser
我尝试在 mac osx 上的终端中通过 telnet 连接到 TOR 并请求新身份,但它不起作用,我总是收到此错误消息: Trying 127.0.0.1... telnet: connect to
我正在开发一个 .NET 应用程序,它可以使用 Graph API 代表用户发送电子邮件。 提示用户对应用程序进行授权;然后使用获取的访问 token 来调用 Graph API。刷新 token 用
我正在开发一项服务,客户可以在其中注册他们的 webhook URL,我将发送有关已注册 URL 的更新。为了安全起见,我想让客户端(接收方)识别是我(服务器)向他们发送请求。 Facebook和 G
在 Haskell 中,有没有办法测试两个 IORef 是否相同?我正在寻找这样的东西: IORef a -> IORef a -> IO Bool 例如,如果您想可视化由 IORef 组成的图形,这
我是 .NET、MVC 和身份框架的新手。我注意到身份框架允许通过注释保护单个 Controller 操作。 [Authorize] public ActionResult Edit(int? Id)
我有一列具有身份的列,其计数为19546542,我想在删除所有数据后将其重置。我需要类似ms sql中的'dbcc checkident'这样的内容,但在Oracle中 最佳答案 在Oracle 12
这是我用来创建 session 以发送电子邮件的代码: props.put("mail.smtp.auth", "true"); props.put("mail.smtp.starttls.enabl
我想了解 [AllowAnonymous] 标签的工作原理。 我有以下方法 [HttpGet] public ActionResult Add() { return View(); } 当我没
在使用沙盒测试环境时,PayPal 身份 token 对某些人显示而不对其他人显示的原因是否有任何原因。 我在英国使用 API,终生无法生成或找到 token 。 我已经遵循协议(protocol)并
我对非常简单的事情有一些疑问:IDENTITY。我尝试在 phpMyAdmin 中创建表: CREATE TABLE IF NOT EXISTS typEventu ( typEventu
习语 #1 和 #5 是 FinnAPL Idiom Library两者具有相同的名称:“Progressive index of (without replacement)”: ((⍴X)⍴⍋⍋X⍳
当我第一次在 TFS 中设置时,我的公司拼错了我的用户名。此后他们将其更改为正确的拼写,但该更改显然未反射(reflect)在 TFS 中。当我尝试 checkin 更改时,出现此错误: 有没有一种方
我是一名优秀的程序员,十分优秀!