gpt4 book ai didi

r - 我如何将所有不同的条目分类为男性、女性和非二元

转载 作者:行者123 更新时间:2023-12-02 18:32:36 24 4
gpt4 key购买 nike

我想更改所有性别条目“男、女、女、男、男等”。为了更加一致,所以它只有 3 个元素(男性、女性和非二元)。这是我当前的代码

# Cleaning of Specific Variable Types
removed <- removed %>%
mutate(gender=substr(toupper(gender), 1, 1))

removed <- removed %>%
mutate(gender=case_when(
gender == "M"~"Male",
gender == "F"~"Female",
gender == "N"~"Non-binary")
)

最佳答案

这可能是长版本,但它应该可以工作:数据来自 jay.sf(非常感谢)

  1. 首字母大写
  2. 检查性别中的唯一条目
  3. 为每个类别创建模式
  4. 使用 str_detect 和模式应用 case_when 条件:
# Capitalize each value to avoid interaction of "man" and "woman" in str_detect
# check for unique elements in `gender`
removed$gender <- str_to_title(removed$gender)
unique(removed$gender)
[1] "Male" "Woman" "Other" "Mtf" "Female"
[6] "Man" "Ftm" "Androgyne"

# define pattern for each category
Male <- paste(c("Male", "Man"), collapse = "|")
Female <- paste(c("Woman", "Female"), collapse = "|")
Non_binary <- paste(c("Other", "Mtf", "Ftm", "Androgyne"), collapse= "|")

# apply category with `case_when` and pattern:
library(dplyr)
library(stringr)
removed %>%
mutate(gender = case_when(
str_detect(gender, Male) ~ "Male",
str_detect(gender, Female) ~ "Female",
str_detect(gender, Non_binary) ~ "Non-binary"))

输出:

gender
1 Male
2 Female
3 Male
4 Non-binary
5 Non-binary
6 Female
7 Male
8 Non-binary
9 Male
10 Male
11 Male
12 Female
13 Non-binary
14 Female
15 Female
16 Non-binary
17 Male
18 Female
19 Non-binary
20 Non-binary
21 Non-binary
22 Female
23 Female
24 Female
25 Female
26 Male
27 Non-binary
28 Male
29 Female
30 Non-binary

关于r - 我如何将所有不同的条目分类为男性、女性和非二元,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/69240277/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com