- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在学习 C++ 指针。我的导师提到*((int*)A + i * n + j)
是另一种线性化 A[i][j]
的方法符号。我尝试在这个 main 函数中使用 2x4 2D 数组来测试它。
int main()
{
int** A = new int* [100];
for (int i = 0; i < 2; ++i)
{
A[i] = new int[100];
}
//assign value
for (int i = 0; i < 2; ++i)
for (int j = 0; j < 4; ++j)
cin >> *((int*)A + i * 4 + j);
//cin >> A[i][j]; //if I do this instead of the line above, I will get trash values in the output
for (int i = 0; i < 2; ++i)
{
for (int j = 0; j < 4; ++j)
{
cout << *((int*)A + i * 4 + j) << " ";
}
cout << "\n";
}
for (int i = 0; i < 2; ++i)
delete[] A[i];
delete [] A;
}
示例输入:
1 2 3 4
5 6 7 8
我不明白为什么当我这样做
cin >> A[i][j];
然后
cout << *((int*)A + i * 4 + j) << " ";
它给了我垃圾值。这是否意味着我必须cin >> *((int*)A + i * 4 + j);
如果我要cout << *((int*)A + i * 4 + j) << " ";
?
我的另一个问题是:为什么我必须显式转换 (int*)
?为什么不能(A + i * 4 + j)
?
最佳答案
你完全误解了老师想要告诉你的内容。他们的描述中的关键字是“符号”,但他们遗漏了一些重要的内容(我稍后会介绍)
首先,如果您的教练告诉您这样做:
*((int*)A + i * n + j)
质疑他们所说的一切。这种强制转换既没有必要,也不建议这样做,而且除了隐藏不良代码之外什么也做不了。如果 A
是正确的类型,那么执行此操作就足够了:
*(A + i*n + j)
如果它不是正确的类型,您可能一开始就不应该这样做(您刚刚发现)。
其次,您的讲师没有告诉您的是,这对于使用创意在单维数组的线性空间中建立人造多维数组很有用。索引。关键是单维数组。作案手法是这样的:
鉴于希望将 M 行 N 列的 2D 空间映射到 M*N 元素的 1D 空间,您可以这样做:
constexpr size_t M = 10;
constexpr size_t N = 5;
int A[M*N];
A[row * N + col] = value;
// equivalent to...
*(A + row * N + col) = value;
注意,row
应在 0...(M-1) 范围内,col
应在 0..(N-1) 范围内(包含在内) .
这个模型可以扩展到更多维度。例如,“3D”映射,L
表示板,M
表示行,N
表示列:
constexpr size_t L = 10;
constexpr size_t M = 8;
constexpr size_t N = 5;
int A[L*M*N];
A[slab * (M*N) + row * N + col] = value;
// equivalent to...
*(A + slab * (M*N) + row * N + col) = value;
其中 slab
在 0...(L-1) 范围内,row
在 0...(M-1) 范围内,最后col
的范围为 0...(N-1)。
您应该看到一个模式正在形成。只要您知道每个维度的限制,任何 native 单维数组都可以使用多维表示形式制造的下标进行索引,并且生成的索引不会破坏单维数组床。
大多数时候您不需要这样做,但有时它会派上用场,尤其是在 C++ 中,因为它缺乏 C 提供的运行时 VLA 支持。
因此,正确使用你的导师试图告诉你的内容应该是这样的:
#include <iostream>
int main()
{
static constexpr size_t M = 2;
static constexpr size_t N = 4;
int *A = new int[M*N];
//assign value
for (size_t i = 0; i < M; ++i)
{
for (size_t j = 0; j < N; ++j)
std::cin >> *(A + i * N + j);
}
for (size_t i = 0; i < M; ++i)
{
for (size_t j = 0; j < N; ++j)
std::cout << *(A + i * N + j) << " ";
std::cout << "\n";
}
delete [] A;
}
关于c++ - 为什么 A[i][j] 和 *((int*)A + i * n + j) 给出不同的输出?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/71339808/
在C语言中,当有变量(假设都是int)i小于j时,我们可以用等式 i^=j^=i^=j 交换两个变量的值。例如,令int i = 3,j = 5;在计算 i^=j^=i^=j 之后,我有 i = 5,
我为以下问题编写了以下代码: 给定一个由 N 个正整数组成的序列 A,编写一个程序来查找满足 i > A[j]A[i](A[i] 的 A[j] 次方 > A[j] 的 A[i] 次方)。 我的代码通过
这个表达式是从左到右解析的吗?我试图解释解析的结果,但最后的结果是错误的。 int j=10, k=10; j+=j-=j*=j; //j=j+(j-=j*=j)=j+(j-j*j) k+=k*=
给定一个整数数组 A ,我试图找出在给定位置 j ,A[j] 从每个 i=0 到 i=j 在 A 中出现了多少次。我设计了一个如下所示的解决方案 map CF[400005]; for(int i=0
你能帮我算法吗: 给定 2 个相同大小的数组 a[]和 b[]具有大于或等于 1 的整数。 查找不相等的索引 i和 j ( i != j ) 使得值 -max(a[i]*b[i] + a[i] * b
每次用J的M.副词,性能显着下降。因为我怀疑艾弗森和许比我聪明得多,我一定是做错了什么。 考虑 Collatz conjecture .这里似乎有各种各样的内存机会,但不管我放在哪里M. ,性能太差了
假设一个包含各种类型的盒装矩阵: matrix =: ('abc';'defgh';23),:('foo';'bar';45) matrix +---+-----+--+|abc|defgh|23|+
是否有可能对于两个正整数 i 和 j,(-i)/j 不等于 -(i/j)?我不知道这是否可能......我认为这将是关于位的东西,或者 char 类型的溢出或其他东西,但我找不到它。有什么想法吗? 最
假设两个不同大小的数组: N0 =: i. 50 N1 =: i. 500 应该有一种方法可以获得唯一的对,只需将两者结合起来即可。我发现的“最简单”是: ]$R =: |:,"2 |: (,.N0)
我是 J 的新用户,我只是想知道 J 包中是否实现了三次样条插值方法? 最佳答案 我自己不熟悉,但是我确实安装了所有的包,所以 $ rg -l -i spline /usr/share/j/9.02
在 Q/kdb 中,您可以使用 ': 轻松修改动词,它代表每个优先级。它会将动词应用于一个元素及其之前的邻居。例如 =': 检查值对是否相等。在 J 中,您可以轻松折叠 /\ 但它是累积的,是否有成对
嗨,我有一个 4x4 双矩阵 A 1+2i 2-1i -3-2i -1+4i 3-1i -3+2i 1-3i -1-3i 4+3i 3+5i 1-2i -1-4i
刚刚发现 J 语言,我输入: 1+^o.*0j1 I expected the answer to be 0 ,但我得到了 0j1.22465e_16。虽然这非常接近于 0,但我想知道为什么 J 应该
这个问题在这里已经有了答案: With arrays, why is it the case that a[5] == 5[a]? (20 个答案) 关闭 3 年前。 我正在阅读“C++ 编程语言”
当第一行是 1, 1/2 , 1/3 ....这是支持该问题的图像。 是否存在比朴素的 O(n^2) 方法更有效的方法? 我在研究伯努利数时遇到了这个问题,然后在研究“Akiyama-Tanigawa
我写了一段Java代码,它在无限循环中运行。 下面是代码: public class TestProgram { public static void main(String[] args){
for (int i = n; i > 0; i /= 2) { for (int j = 0; j 0; i /= 2) 的第一个循环结果 O(log N) . 第二个循环for (int
如问题中所述,需要找到数组中 (i,j) 对的总数,使得 (1) **ia[j]** 其中 i 和 j 是数组的索引。没有空间限制。 我的问题是 1) Is there any approach w
for l in range(1,len(S)-1): for i in range(1,len(S)-l): j=i+l for X in N:
第二个for循环的复杂度是多少?会是n-i吗?根据我的理解,第一个 for 循环将执行 n 次,但第二个 for 循环中的索引设置为 i。 //where n is the number elemen
我是一名优秀的程序员,十分优秀!