gpt4 book ai didi

java - Java 2D 数组中的列迭代与行迭代一样高效吗?

转载 作者:行者123 更新时间:2023-12-02 18:13:37 25 4
gpt4 key购买 nike

考虑以下嵌套循环,这些循环遍历数组 arr 中每行的元素:

for(int i = 0; i < arr.length; i++)
for(int j; j < arr[0].length; j++)
//some code here involving arr[i][j]

考虑到 Java 没有真正的“二维数组”,而只有数组的数组,这是否与以下迭代数组列的嵌套循环一样高效?

for(int j = 0; j < arr[0].length; j++)
for(int i = 0; i < arr.length; i++)
//some code involving arr[i][j]

尽管arr[i][j]是 O(1),由于 Java 的 2D 数组实现,我会发现解决一种解决方案所需的时间与另一种解决方案所需的时间有什么不同吗?

最佳答案

这是我的第一个基准测试,可能不正确!

关于其他语言(尤其是 C/C++)差异的研究让我很好奇,所以我决定尝试编写一个基准测试(并同时学习如何做它们)。

结果摘要:

Benchmark                    (n)  Mode  Cnt     Score     Error  Units
MainBenchmark.columnFirst 10000 avgt 5 1921,752 ± 341,941 ms/op
MainBenchmark.rowFirst 10000 avgt 5 381,053 ± 44,640 ms/op

看起来行优先顺序(我认为这是正确的名称)比列优先顺序快大约 5 倍。

在日常编程中,这并不重要,您几乎永远不需要优化这样的东西。这样做只是为了科学。

这是我编写的基准测试,它创建 int[10000][10000] 数组并尝试迭代所有元素:

@State(Scope.Benchmark)
@Fork(value = 1, warmups = 2)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@BenchmarkMode(Mode.AverageTime)
public class MainBenchmark {

@Param({"10000"})
private int n;

private int[][] testData;

public static void main(String[] args) throws Exception {
Options opt = new OptionsBuilder()
.include(MainBenchmark.class.getSimpleName())
.forks(1)
.build();

new Runner(opt).run();
}


@Setup
public void setup() {
testData = createData();
}

@Benchmark
public void rowFirst(Blackhole bh) {
for (int i = 0; i < testData.length; i++) {
for (int j = 0; j < testData[0].length; j++) {
int tmp = testData[i][j];
bh.consume(tmp);
}
}
}

@Benchmark
public void columnFirst(Blackhole bh) {
for (int j = 0; j < testData[0].length; j++) {
for (int i = 0; i < testData.length; i++) {
int tmp = testData[i][j];
bh.consume(tmp);
}
}
}

private int[][] createData() {
int[][] ints = new int[n][n];
for (int[] anInt : ints) {
Arrays.fill(anInt, 0);
}
return ints;
}
}

以下是完整结果:

# JMH version: 1.23
# VM version: JDK 13.0.1, OpenJDK 64-Bit Server VM, 13.0.1+9
# VM invoker: C:\Program Files\Java\jdk-13.0.1\bin\java.exe
# VM options: -Dvisualvm.id=957546995472200 -javaagent:(...) -Dfile.encoding=UTF-8
# Warmup: 5 iterations, 10 s each
# Measurement: 5 iterations, 10 s each
# Timeout: 10 min per iteration
# Threads: 1 thread, will synchronize iterations
# Benchmark mode: Average time, time/op
# Benchmark: benchmarking.MainBenchmark.columnFirst
# Parameters: (n = 10000)

# Run progress: 0,00% complete, ETA 00:10:00
# Warmup Fork: 1 of 2
# Warmup Iteration 1: 1810,536 ms/op
# Warmup Iteration 2: 1883,026 ms/op
# Warmup Iteration 3: 1798,335 ms/op
# Warmup Iteration 4: 1806,877 ms/op
# Warmup Iteration 5: 1797,246 ms/op
Iteration 1: 1794,506 ms/op
Iteration 2: 1822,085 ms/op
Iteration 3: 1845,853 ms/op
Iteration 4: 2000,127 ms/op
Iteration 5: 2045,922 ms/op

# Run progress: 16,67% complete, ETA 00:09:15
# Warmup Fork: 2 of 2
# Warmup Iteration 1: 1780,858 ms/op
# Warmup Iteration 2: 1771,650 ms/op
# Warmup Iteration 3: 1786,517 ms/op
# Warmup Iteration 4: 2198,348 ms/op
# Warmup Iteration 5: 1742,218 ms/op
Iteration 1: 2124,944 ms/op
Iteration 2: 2187,857 ms/op
Iteration 3: 1905,843 ms/op
Iteration 4: 1925,476 ms/op
Iteration 5: 1785,446 ms/op

# Run progress: 33,33% complete, ETA 00:07:22
# Fork: 1 of 1
# Warmup Iteration 1: 2082,695 ms/op
# Warmup Iteration 2: 1783,062 ms/op
# Warmup Iteration 3: 1799,518 ms/op
# Warmup Iteration 4: 1800,832 ms/op
# Warmup Iteration 5: 1974,720 ms/op
Iteration 1: 1934,673 ms/op
Iteration 2: 2013,677 ms/op
Iteration 3: 1784,654 ms/op
Iteration 4: 1895,396 ms/op
Iteration 5: 1980,359 ms/op


Result "benchmarking.MainBenchmark.columnFirst":
1921,752 ±(99.9%) 341,941 ms/op [Average]
(min, avg, max) = (1784,654, 1921,752, 2013,677), stdev = 88,801
CI (99.9%): [1579,811, 2263,693] (assumes normal distribution)


# JMH version: 1.23
# VM version: JDK 13.0.1, OpenJDK 64-Bit Server VM, 13.0.1+9
# VM invoker: C:\Program Files\Java\jdk-13.0.1\bin\java.exe
# VM options: -Dvisualvm.id=957546995472200 -javaagent:C:\Program Files\JetBrains\IntelliJ IDEA 2019.2.4\lib\idea_rt.jar=51059:C:\Program Files\JetBrains\IntelliJ IDEA 2019.2.4\bin -Dfile.encoding=UTF-8
# Warmup: 5 iterations, 10 s each
# Measurement: 5 iterations, 10 s each
# Timeout: 10 min per iteration
# Threads: 1 thread, will synchronize iterations
# Benchmark mode: Average time, time/op
# Benchmark: benchmarking.MainBenchmark.rowFirst
# Parameters: (n = 10000)

# Run progress: 50,00% complete, ETA 00:05:32
# Warmup Fork: 1 of 2
# Warmup Iteration 1: 381,809 ms/op
# Warmup Iteration 2: 394,792 ms/op
# Warmup Iteration 3: 384,524 ms/op
# Warmup Iteration 4: 389,858 ms/op
# Warmup Iteration 5: 378,686 ms/op
Iteration 1: 373,117 ms/op
Iteration 2: 371,832 ms/op
Iteration 3: 373,667 ms/op
Iteration 4: 384,930 ms/op
Iteration 5: 377,080 ms/op

# Run progress: 66,67% complete, ETA 00:03:37
# Warmup Fork: 2 of 2
# Warmup Iteration 1: 381,334 ms/op
# Warmup Iteration 2: 383,445 ms/op
# Warmup Iteration 3: 387,772 ms/op
# Warmup Iteration 4: 410,992 ms/op
# Warmup Iteration 5: 374,811 ms/op
Iteration 1: 383,491 ms/op
Iteration 2: 389,619 ms/op
Iteration 3: 388,545 ms/op
Iteration 4: 369,743 ms/op
Iteration 5: 372,389 ms/op

# Run progress: 83,33% complete, ETA 00:01:47
# Fork: 1 of 1
# Warmup Iteration 1: 368,873 ms/op
# Warmup Iteration 2: 383,034 ms/op
# Warmup Iteration 3: 394,592 ms/op
# Warmup Iteration 4: 373,512 ms/op
# Warmup Iteration 5: 373,946 ms/op
Iteration 1: 394,551 ms/op
Iteration 2: 392,298 ms/op
Iteration 3: 376,282 ms/op
Iteration 4: 372,903 ms/op
Iteration 5: 369,230 ms/op


Result "benchmarking.MainBenchmark.rowFirst":
381,053 ±(99.9%) 44,640 ms/op [Average]
(min, avg, max) = (369,230, 381,053, 394,551), stdev = 11,593
CI (99.9%): [336,412, 425,693] (assumes normal distribution)


# Run complete. Total time: 00:10:42

REMEMBER: The numbers below are just data. To gain reusable insights, you need to follow up on
why the numbers are the way they are. Use profilers (see -prof, -lprof), design factorial
experiments, perform baseline and negative tests that provide experimental control, make sure
the benchmarking environment is safe on JVM/OS/HW level, ask for reviews from the domain experts.
Do not assume the numbers tell you what you want them to tell.

Benchmark (n) Mode Cnt Score Error Units
MainBenchmark.columnFirst 10000 avgt 5 1921,752 ± 341,941 ms/op
MainBenchmark.rowFirst 10000 avgt 5 381,053 ± 44,640 ms/op

Process finished with exit code 0

关于java - Java 2D 数组中的列迭代与行迭代一样高效吗?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60448941/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com