gpt4 book ai didi

r - R 如何处理 lm() 中的序数预测变量?

转载 作者:行者123 更新时间:2023-12-02 17:59:19 25 4
gpt4 key购买 nike

据我了解,当您使用标称预测器在 R 中拟合线性模型时,R 本质上对每个级别(引用级别除外)使用虚拟 1/0 变量,然后为每个级别提供常规旧系数变量。它对序数预测变量有什么作用?它为我提供了每个级别的估计系数,因此它不仅仅将排名视为数字预测变量。我如何正确解释这样的输出?

cars.data <- mtcars[,1:3]
cars.data$cyl.ord <- ordered(cars.data$cyl)
lm(mpg ~ disp + cyl.ord, data = cars.data)
Call:  
lm(formula = mpg ~ disp + cyl.ord)

Coefficients:
(Intercept) disp cyl.ord.L cyl.ord.Q
26.34212 -0.02731 -3.38852 1.95127

我最初假设我可以像无序分类变量一样使用序数变量的系数,但是 predict.lm(ord.model, newdata = data.frame("disp"= 150, "cyl.ord"= "6")) 给出 20.65263,而 26.34212378 -0.02730864*150 -3.38851642 只给出 18.85731,所以不可能是这样。 (我尝试用 +1.95127 和 +0 代替 -3.38852,以防我只是混淆了它们列出的顺序,但没有骰子。)我在 order()< 的文档中找不到任何内容lm(),在线或在我的任何书中。

R 如何在数学上处理序数预测变量,以及我应该如何处理输出?

最佳答案

看来,将因子变量转换为序数因子变量会将默认对比度从“contr.treatment”更改为“contr.poly”

# make cyl a factor
cars.data$cyl <- factor(cars.data$cyl)

现在,考虑带有“contr.treatment”和“contr.poly”的 lm 的输出

lm(mpg ~ disp + cyl.ord, data=cars.data)

Call:
lm(formula = mpg ~ disp + cyl.ord, data = cars.data)

Coefficients:
(Intercept) disp cyl.ord.L cyl.ord.Q
26.34212 -0.02731 -3.38852 1.95127

lm(mpg ~ disp + cyl, data=cars.data,
contrasts=list(cyl="contr.poly"))

Call:
lm(formula = mpg ~ disp + cyl, data = cars.data,
contrasts=list(cyl = "contr.poly"))

Coefficients:
(Intercept) disp cyl.L cyl.Q
26.34212 -0.02731 -3.38852 1.95127

因此,有序因子使用“contr.poly”作为默认对比度,我们可以从无序因子得到相同的结果。现在,考虑无序因子。

lm(mpg ~ disp + cyl, data=cars.data)

Call:
lm(formula = mpg ~ disp + cyl, data = cars.data)

Coefficients:
(Intercept) disp cyl6 cyl8
29.53477 -0.02731 -4.78585 -4.79209

lm(mpg ~ disp + cyl.ord, data=cars.data, contrasts=list(cyl.ord="contr.treatment"))

Call:
lm(formula = mpg ~ disp + cyl.ord, data = cars.data,
contrasts=list(cyl.ord="contr.treatment"))

Coefficients:
(Intercept) disp cyl.ord6 cyl.ord8
29.53477 -0.02731 -4.78585 -4.79209

因此,无序因子变量默认使用“contr.treatment”,我们可以通过明确要求它从有序因子获得相同的结果。

但是让我们仔细看看回归中使用的模型矩阵。

# Show model matrix
model.matrix(mpg ~ disp + cyl, data=cars.data)
(Intercept) disp cyl6 cyl8
Mazda RX4 1 160.0 1 0
Mazda RX4 Wag 1 160.0 1 0
Datsun 710 1 108.0 0 0
...
attr(,"assign")
[1] 0 1 2 2
attr(,"contrasts")
attr(,"contrasts")$cyl
[1] "contr.treatment"

现在,使用“contr.poly”作为对比

model.matrix(mpg ~ disp + cyl, data=cars.data, contrasts.arg=list(cyl="contr.poly"))
(Intercept) disp cyl.L cyl.Q
Mazda RX4 1 160.0 -9.073800e-17 -0.8164966
Mazda RX4 Wag 1 160.0 -9.073800e-17 -0.8164966
Datsun 710 1 108.0 -7.071068e-01 0.4082483
...
attr(,"assign")
[1] 0 1 2 2
attr(,"contrasts")
attr(,"contrasts")$cyl
[1] "contr.poly"

接下来,检查 cyl.ord 来代替 cyl

model.matrix(mpg ~ disp + cyl.ord, data=cars.data)
(Intercept) disp cyl.ord.L cyl.ord.Q
Mazda RX4 1 160.0 -9.073800e-17 -0.8164966
Mazda RX4 Wag 1 160.0 -9.073800e-17 -0.8164966
Datsun 710 1 108.0 -7.071068e-01 0.4082483
...
attr(,"assign")
[1] 0 1 2 2
attr(,"contrasts")
attr(,"contrasts")$cyl.ord
[1] "contr.poly"

最后两个矩阵具有相同的条目,因此使用“contr.poly”似乎可以解释最初的差异。要了解有关对比度的更多信息,您可以查看 ?contrasts

关于r - R 如何处理 lm() 中的序数预测变量?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41943789/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com