gpt4 book ai didi

python - SIFT feature_matching点坐标

转载 作者:行者123 更新时间:2023-12-02 17:39:34 27 4
gpt4 key购买 nike

我想使用基于FLANN的Matcher打印检测功能关键点
算法:http://docs.opencv.org/trunk/dc/dc3/tutorial_py_matcher.html
搜索效果很好,并以红色(全部)和绿色(良好)的关键点作为教程显示。
我只想打印第二个图像(场景)的此处为“kp2”的坐标(x,y),但是它不起作用。
这是我的代码:

import numpy as np
import cv2
from matplotlib import pyplot as plt
img1 = cv2.imread('img1.jpg',0) # queryImage
img2 = cv2.imread('img2.jpg',0) # trainImage
# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
# FLANN parameters
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50) # or pass empty dictionary
flann = cv2.FlannBasedMatcher(index_params,search_params)
matches = flann.knnMatch(des1,des2,k=2)
# Need to draw only good matches, so create a mask
matchesMask = [[0,0] for i in range(len(matches))]

# ratio test as per Lowe's paper
for i,(m,n) in enumerate(matches):
if m.distance < 0.7*n.distance:
matchesMask[i]=[1,0]
print(i,kp2[i].pt)

draw_params = dict(matchColor = (0,255,0),
singlePointColor = (255,0,0),
matchesMask = matchesMask,
flags = 0)
img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,matches,None,**draw_params)
plt.imshow(img3,),plt.show()

我的结果:
77 (67.68722534179688, 92.98455047607422)
82 (14.395119667053223, 93.1697998046875)
86 (127.58460235595703, 98.1304931640625)
109 (66.52041625976562, 111.51738739013672)
110 (66.52041625976562, 111.51738739013672)
146 (69.3978500366211, 11.287369728088379)

匹配关键点的数量很好,但是坐标不正确 print(i,kp2 [i] .pt)。我检查了原始图像。
我做错了什么,如果是的话,我必须放哪行才能只打印匹配的关键点坐标。
谢谢大家

最佳答案

更新时间:

我找到了有用的资源http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_matcher/py_matcher.html

我使用这两个图像进行测试:

AndroidAndroid_small

匹配结果如下:
enter image description here

结果:

0 (42.05057144165039, 134.98709106445312) (139.18690490722656, 24.550437927246094)
1 (53.74299621582031, 249.95252990722656) (26.700265884399414, 124.75701904296875)
2 (56.41600799560547, 272.58843994140625) (139.18690490722656, 24.550437927246094)
3 (82.96114349365234, 124.731201171875) (41.35136795043945, 62.25730895996094)
4 (82.96114349365234, 124.731201171875) (41.35136795043945, 62.25730895996094)
5 (82.96114349365234, 124.731201171875) (41.35136795043945, 62.25730895996094)
6 (91.90446472167969, 293.59735107421875) (139.18690490722656, 24.550437927246094)
8 (94.516845703125, 296.0242919921875) (139.18690490722656, 24.550437927246094)
9 (98.97846221923828, 134.186767578125) (49.89073944091797, 67.37061309814453)

代码和解释如下:
#!/usr/bin/python3
# 2017.10.06 22:36:44 CST
# 2017.10.06 23:18:25 CST

"""
Environment:
OpenCV 3.3 + Python 3.5

Aims:
(1) Detect sift keypoints and compute descriptors.
(2) Use flannmatcher to match descriptors.
(3) Do ratio test and output the matched pairs coordinates, draw some pairs in purple .
(4) Draw matched pairs in blue color, singlepoints in red.
"""
import numpy as np
import cv2
from matplotlib import pyplot as plt
imgname = "android.png" # query image (large scene)
imgname2 = "android_small.png" # train image (small object)

## Create SIFT object
sift = cv2.xfeatures2d.SIFT_create()

## Create flann matcher
FLANN_INDEX_KDTREE = 1 # bug: flann enums are missing
flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
#matcher = cv2.FlannBasedMatcher_create()
matcher = cv2.FlannBasedMatcher(flann_params, {})

## Detect and compute
img1 = cv2.imread(imgname)
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
kpts1, descs1 = sift.detectAndCompute(gray1,None)

## As up
img2 = cv2.imread(imgname2)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
kpts2, descs2 = sift.detectAndCompute(gray2,None)

## Ratio test
matches = matcher.knnMatch(descs1, descs2, 2)
matchesMask = [[0,0] for i in range(len(matches))]
for i, (m1,m2) in enumerate(matches):
if m1.distance < 0.7 * m2.distance:
matchesMask[i] = [1,0]
## Notice: How to get the index
pt1 = kpts1[m1.queryIdx].pt
pt2 = kpts2[m1.trainIdx].pt
print(i, pt1,pt2 )
if i % 5 ==0:
## Draw pairs in purple, to make sure the result is ok
cv2.circle(img1, (int(pt1[0]),int(pt1[1])), 5, (255,0,255), -1)
cv2.circle(img2, (int(pt2[0]),int(pt2[1])), 5, (255,0,255), -1)


## Draw match in blue, error in red
draw_params = dict(matchColor = (255, 0,0),
singlePointColor = (0,0,255),
matchesMask = matchesMask,
flags = 0)

res = cv2.drawMatchesKnn(img1,kpts1,img2,kpts2,matches,None,**draw_params)
cv2.imshow("Result", res);cv2.waitKey();cv2.destroyAllWindows()

关于python - SIFT feature_matching点坐标,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46607647/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com