- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用AMD Radeon R9 M375。我尝试按照此答案https://stackoverflow.com/a/34250412/8731839进行操作,但对我不起作用。
我遵循此:http://answers.opencv.org/question/108646/opencl-can-not-detect-my-nvidia-gpu-via-opencv/?answer=108784#post-id-108784
这是我的clinfo.exe输出
Platform Name: AMD Accelerated Parallel Processing
Number of devices: 2
Device Type: CL_DEVICE_TYPE_GPU
Vendor ID: 1002h
Board name: AMD Radeon (TM) R9 M375
Device Topology: PCI[ B#4, D#0, F#0 ]
Max compute units: 10
Max work items dimensions: 3
Max work items[0]: 256
Max work items[1]: 256
Max work items[2]: 256
Max work group size: 256
Preferred vector width char: 4
Preferred vector width short: 2
Preferred vector width int: 1
Preferred vector width long: 1
Preferred vector width float: 1
Preferred vector width double: 1
Native vector width char: 4
Native vector width short: 2
Native vector width int: 1
Native vector width long: 1
Native vector width float: 1
Native vector width double: 1
Max clock frequency: 1015Mhz
Address bits: 32
Max memory allocation: 3019898880
Image support: Yes
Max number of images read arguments: 128
Max number of images write arguments: 8
Max image 2D width: 16384
Max image 2D height: 16384
Max image 3D width: 2048
Max image 3D height: 2048
Max image 3D depth: 2048
Max samplers within kernel: 16
Max size of kernel argument: 1024
Alignment (bits) of base address: 2048
Minimum alignment (bytes) for any datatype: 128
Single precision floating point capability
Denorms: No
Quiet NaNs: Yes
Round to nearest even: Yes
Round to zero: Yes
Round to +ve and infinity: Yes
IEEE754-2008 fused multiply-add: Yes
Cache type: Read/Write
Cache line size: 64
Cache size: 16384
Global memory size: 3221225472
Constant buffer size: 65536
Max number of constant args: 8
Local memory type: Scratchpad
Local memory size: 32768
Max pipe arguments: 0
Max pipe active reservations: 0
Max pipe packet size: 0
Max global variable size: 0
Max global variable preferred total size: 0
Max read/write image args: 0
Max on device events: 0
Queue on device max size: 0
Max on device queues: 0
Queue on device preferred size: 0
SVM capabilities:
Coarse grain buffer: No
Fine grain buffer: No
Fine grain system: No
Atomics: No
Preferred platform atomic alignment: 0
Preferred global atomic alignment: 0
Preferred local atomic alignment: 0
Kernel Preferred work group size multiple: 64
Error correction support: 0
Unified memory for Host and Device: 0
Profiling timer resolution: 1
Device endianess: Little
Available: Yes
Compiler available: Yes
Execution capabilities:
Execute OpenCL kernels: Yes
Execute native function: No
Queue on Host properties:
Out-of-Order: No
Profiling : Yes
Queue on Device properties:
Out-of-Order: No
Profiling : No
Platform ID: 00007FFF209D0188
Name: Capeverde
Vendor: Advanced Micro Devices, Inc.
Device OpenCL C version: OpenCL C 1.2
Driver version: 2348.3
Profile: FULL_PROFILE
Version: OpenCL 1.2 AMD-APP (2348.3)
Extensions: cl_khr_fp64 cl_amd_fp64 cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics
cl_khr_local_int32_extended_atomics cl_khr_int64_base_atomics cl_khr_int64_extended_atomics cl_khr_3d_image_writes cl_khr_byte_addressable_store cl_khr_gl_sharing
cl_amd_device_attribute_query cl_amd_vec3 cl_amd_printf cl_amd_media_ops cl_amd_media_ops2 cl_amd_popcnt cl_khr_d3d10_sharing cl_khr_d3d11_sharing cl_khr_dx9_media_sharing
cl_khr_image2d_from_buffer cl_khr_spir cl_khr_gl_event cl_amd_liquid_flash
Device Type: CL_DEVICE_TYPE_CPU
Vendor ID: 1002h
Board name:
Max compute units: 4
Max work items dimensions: 3
Max work items[0]: 1024
Max work items[1]: 1024
Max work items[2]: 1024
Max work group size: 1024
Preferred vector width char: 16
Preferred vector width short: 8
Preferred vector width int: 4
Preferred vector width long: 2
Preferred vector width float: 8
Preferred vector width double: 4
Native vector width char: 16
Native vector width short: 8
Native vector width int: 4
Native vector width long: 2
Native vector width float: 8
Native vector width double: 4
Max clock frequency: 2200Mhz
Address bits: 64
Max memory allocation: 2147483648
Image support: Yes
Max number of images read arguments: 128
Max number of images write arguments: 64
Max image 2D width: 8192
Max image 2D height: 8192
Max image 3D width: 2048
Max image 3D height: 2048
Max image 3D depth: 2048
Max samplers within kernel: 16
Max size of kernel argument: 4096
Alignment (bits) of base address: 1024
Minimum alignment (bytes) for any datatype: 128
Single precision floating point capability
Denorms: Yes
Quiet NaNs: Yes
Round to nearest even: Yes
Round to zero: Yes
Round to +ve and infinity: Yes
IEEE754-2008 fused multiply-add: Yes
Cache type: Read/Write
Cache line size: 64
Cache size: 32768
Global memory size: 8499593216
Constant buffer size: 65536
Max number of constant args: 8
Local memory type: Global
Local memory size: 32768
Max pipe arguments: 16
Max pipe active reservations: 16
Max pipe packet size: 2147483648
Max global variable size: 1879048192
Max global variable preferred total size: 1879048192
Max read/write image args: 64
Max on device events: 0
Queue on device max size: 0
Max on device queues: 0
Queue on device preferred size: 0
SVM capabilities:
Coarse grain buffer: No
Fine grain buffer: No
Fine grain system: No
Atomics: No
Preferred platform atomic alignment: 0
Preferred global atomic alignment: 0
Preferred local atomic alignment: 0
Kernel Preferred work group size multiple: 1
Error correction support: 0
Unified memory for Host and Device: 1
Profiling timer resolution: 465
Device endianess: Little
Available: Yes
Compiler available: Yes
Execution capabilities:
Execute OpenCL kernels: Yes
Execute native function: Yes
Queue on Host properties:
Out-of-Order: No
Profiling : Yes
Queue on Device properties:
Out-of-Order: No
Profiling : No
Platform ID: 00007FFF209D0188
Name: Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz
Vendor: GenuineIntel
Device OpenCL C version: OpenCL C 1.2
Driver version: 2348.3 (sse2,avx)
Profile: FULL_PROFILE
Version: OpenCL 1.2 AMD-APP (2348.3)
std::vector<cv::ocl::PlatformInfo> platforms;
cv::ocl::getPlatfomsInfo(platforms);
//OpenCL Platforms
for (size_t i = 0; i < platforms.size(); i++)
{
//Access to Platform
const cv::ocl::PlatformInfo* platform = &platforms[i];
//Platform Name
std::cout << "Platform Name: " << platform->name().c_str() << "\n";
//Access Device within Platform
cv::ocl::Device current_device;
for (int j = 0; j < platform->deviceNumber(); j++)
{
//Access Device
platform->getDevice(current_device, j);
//Device Type
int deviceType = current_device.type();
cout << "Device Number: " << platform->deviceNumber() << endl;
cout << "Device Type: " << deviceType << endl;
}
}
Platform Name: Intel(R) OpenCL
Device Number: 2
Device Type: 2
Device Number: 2
Device Type: 4
Platform Name: AMD Accelerated Parallel Processing
Device Number: 2
Device Type: 4
Device Number: 2
Device Type: 2
initializeContextFromHandler
方法,但是有关OpenCV的文档还不够。
Documentation Link
最佳答案
问题已解决。我不知道自己做了什么,但是AMD现在正在工作。
当前设置(在Windows上):
Name: OPENCV_OPENCL_DEVICE
Value: AMD:GPU:Capeverde
setUseOpenCL(bool foo)
中存在的ocl.hpp
选择使用GPU还是CPU。 #include <opencv2/core/ocl.hpp>
#include <opencv2/opencv.hpp>
int main() {
cv::UMat mat1 = cv::UMat::ones(10, 10, CV_32F);
cv::UMat mat2 = cv::UMat::zeros(10, 10, CV_32F);
cv::UMat output = cv::UMat(10, 10, CV_32F);
cv::subtract(mat1, mat2, output);
std::cout << output << "\n";
std::getchar();
}
关于opencv - OpenCL无法使用OpenCV检测我的AMD GPU,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48998571/
Intel、AMD 和 Khronos OpenCL 之间有什么区别。我对 OpenCL 完全陌生,想从它开始。我不知道在我的操作系统上安装哪个更好。 最佳答案 OpenCL 是 C 和 C++ 语言
我在这里的一篇文章中看到,我们可以从 OpenCL 内核调用函数。但是在我的情况下,我还需要并行化该复杂函数(由所有可用线程运行),所以我是否必须将该函数也设为内核并像从主内核中调用函数一样直接调
最近我看到一些开发板支持 OpenCL EP,例如 odroid XU。我知道的一件事是 OpenCL EP 适用于 ARM 处理器,但它与基于主要桌面的 OpenCL 在哪些特性上有所不同。 最佳答
我想知道在 OpenCL 中设置为内核函数的参数数量是否有任何限制。设置参数时出现 INVALID_ARG_INDEX 错误。我在内核函数中设置了 9 个参数。请在这方面帮助我。 最佳答案 您可以尝试
我对零拷贝的工作原理有点困惑。 1-要确认以下内容对应于opencl中的零拷贝。 ....................... . . . .
我是 OpenCL 的初学者,我很难理解某些东西。 我想改进主机和设备之间的图像传输。 我制定了一个计划以更好地了解我。 顶部:我现在拥有的 |底部:我想要的 HtD(主机到设备)和 DtH(设备到主
今天我又加了四个 __local变量到我的内核以转储中间结果。但是只需将另外四个变量添加到内核的签名并添加相应的内核参数就会将内核的所有输出呈现为“0”。没有一个 cl 函数返回错误代码。 我进一步尝
我知道工作项被分组到工作组中,并且您不能在工作组之外进行同步。 这是否意味着工作项是并行执行的? 如果是这样,使用 128 个工作项创建 1 个工作组是否可能/有效? 最佳答案 组内的工作项将一起安排
我相当确定经纱仅在 CUDA 中定义。但也许我错了。就 OpenCL 而言,什么是扭曲? 它与工作组不一样,是吗? 任何相关的反馈都受到高度赞赏。谢谢! 最佳答案 它没有在 OpenCL 标准中定义。
已结束。此问题正在寻求书籍、工具、软件库等的推荐。它不满足Stack Overflow guidelines 。目前不接受答案。 我们不允许提出寻求书籍、工具、软件库等推荐的问题。您可以编辑问题,以便
在OpenCL中,我的理解是可以使用barrier()函数来同步工作组中的线程。我(通常)确实了解它们的用途以及何时使用它们。我还知道工作组中的所有线程都必须遇到障碍,否则会出现问题。然而,到目前为止
我的主板上有 Nvidia 显卡 (GeForce GT 640)。我已经在我的盒子上安装了 OpenCL。当我使用“clGetPlatformInfo(参数)”查询平台时,我看到以下输出:-#可用平
我目前正在构建一个 ray marcher 来查看像 mandelbox 等东西。它工作得很好。但是,在我当前的程序中,它使用每个 worker 作为从眼睛转换的光线。这意味着每个 worker 有大
我编写了两个不同的 openCl 内核,使用 nvidia profiler 获取了有关它们的一些信息,发现两者每个工作项都使用 63 个寄存器。 我尝试了一切我能想到的方法来降低这个数字(用 ush
我的主板上有 Nvidia 显卡 (GeForce GT 640)。我已经在我的盒子上安装了 OpenCL。当我使用“clGetPlatformInfo(参数)”查询平台时,我看到以下输出:-#可用平
我目前正在构建一个 ray marcher 来查看像 mandelbox 等东西。它工作得很好。但是,在我当前的程序中,它使用每个 worker 作为从眼睛转换的光线。这意味着每个 worker 有大
我正在尝试使用 OpenCL 加速一些计算,算法的一部分包括矩阵求逆。是否有任何开源库或免费可用的代码来计算用 OpenCL 或 CUDA 编写的矩阵的 lu 分解(lapack dgetrf 和 d
我正在尝试在 OpenCL 内核中使用递归。编译成功,但运行时出现编译错误,所以我想知道,由于 CUDA 现在支持动态并行,OpenCL 是否支持动态并行? 最佳答案 OpenCL 不支持递归。请参阅
考虑以下代码,它从大小为 size 的 double 组创建缓冲区内存对象: coef_mem = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM
OpenCL 中目标平台的示例是什么?例如,它是 Windows、Android、Mac 等操作系统,还是设备中的实际芯片? 最佳答案 OpenCL 平台本质上是一个 OpenCL 实现。它与操作系统
我是一名优秀的程序员,十分优秀!