gpt4 book ai didi

python - 如何重新缩放图像坐标的信息以在相似图像的缩放版本上工作

转载 作者:行者123 更新时间:2023-12-02 17:33:45 24 4
gpt4 key购买 nike

我使用yolov3来检测416x416大小的帧中的对象。我使用边界框信息在该416x416图像上绘制了框。

但是由于图片太小,我无法正确看到它,所以我使用的框架具有暗淡的1920x1080。我想缩放边界框信息和x,y坐标,以使其缩放到高暗淡的图片,但是我无法正确缩放它。

显然,信息远未解决。

注意!在传递帧之前,我使用此方法将帧的大小从1920,1080调整为416,416

def letterbox_resize(img, size=(resized_image_size,resized_image_size), padColor=0):

h, w = img.shape[:2]
sh, sw = size

# interpolation method
if h > sh or w > sw: # shrinking image
interp = cv2.INTER_AREA
else: # stretching image
interp = cv2.INTER_CUBIC

# aspect ratio of image
aspect = w/h # if on Python 2, you might need to cast as a float: float(w)/h

# compute scaling and pad sizing
if aspect > 1: # horizontal image
new_w = sw
new_h = np.round(new_w/aspect).astype(int)
pad_vert = (sh-new_h)/2
pad_top, pad_bot = np.floor(pad_vert).astype(int), np.ceil(pad_vert).astype(int)
pad_left, pad_right = 0, 0
elif aspect < 1: # vertical image
new_h = sh
new_w = np.round(new_h*aspect).astype(int)
pad_horz = (sw-new_w)/2
pad_left, pad_right = np.floor(pad_horz).astype(int), np.ceil(pad_horz).astype(int)
pad_top, pad_bot = 0, 0
else: # square image
new_h, new_w = sh, sw
pad_left, pad_right, pad_top, pad_bot = 0, 0, 0, 0

# set pad color
if len(img.shape) is 3 and not isinstance(padColor, (list, tuple, np.ndarray)): # color image but only one color provided
padColor = [padColor]*3

# scale and pad
scaled_img = cv2.resize(img, (new_w, new_h), interpolation=interp)
scaled_img = cv2.copyMakeBorder(scaled_img, pad_top, pad_bot, pad_left, pad_right, borderType=cv2.BORDER_CONSTANT, value=padColor)

return scaled_img

如果有人帮助我编写脚本,可以重新调整yolo预测的x,y,w,h信息,以便我可以在图像上正确绘制准确的方框。

最佳答案

重新缩放过程未考虑顶部的零填充区域。在乘以缩放比例之前,请除去顶部的零垫,您应该能够得到正确的结果。

这是所有3种情况的示例代码,其中边界框是与YOLO结果相对应的点。

def boundBox_restore(boundingbox, ori_size=(ori_image_width,ori_image_height), resized_size=(resized_image_size,resized_image_size)):

h, w = ori_size
sh, sw = resized_size

scale_ratio = w / sw

ox,oy,ow,oh = boundingbox

# aspect ratio of image
aspect = w/h # if on Python 2, you might need to cast as a float: float(w)/h

# compute scaling and pad sizing
if aspect > 1: # horizontal image
new_w = sw
new_h = np.round(new_w/aspect).astype(int)
pad_vert = (sh-new_h)/2
pad_top, pad_bot = np.floor(pad_vert).astype(int), np.ceil(pad_vert).astype(int)
pad_left, pad_right = 0, 0
elif aspect < 1: # vertical image
new_h = sh
new_w = np.round(new_h*aspect).astype(int)
pad_horz = (sw-new_w)/2
pad_left, pad_right = np.floor(pad_horz).astype(int), np.ceil(pad_horz).astype(int)
pad_top, pad_bot = 0, 0
else: # square image
new_h, new_w = sh, sw
pad_left, pad_right, pad_top, pad_bot = 0, 0, 0, 0


# remove pad
ox = ox - pad_left
oy = oy - pad_top

# rescale
ox = ox * scale_ratio
oy = oy * scale_ratio
ow = ow * scale_ratio
oh = oh * scale_ratio


return (ox,oy,oh,ow)

关于python - 如何重新缩放图像坐标的信息以在相似图像的缩放版本上工作,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53571433/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com