gpt4 book ai didi

python - 如何在Flask中上传多个文件?

转载 作者:行者123 更新时间:2023-12-02 17:24:33 28 4
gpt4 key购买 nike

我有一个flask应用程序,该应用程序用于将用户输入作为图像并运行模型并将其保存在文件夹中,它最初会获取单个图像并运行该应用程序。但是我希望我的应用程序拍摄多个图像,在这些图像上运行模型,然后将其保存到文件夹中。
在这个StackOverflow问题上找到了所有答案:Uploading multiple files with Flask,没有一个适合我的用例。
请帮助我阐明我要去哪里。
这是我的 flask 文件

from flask import Flask, render_template, url_for, session, redirect, request
from image_initial import Image_tensorflow

app = Flask(__name__)
app.config['SECRET_KEY'] = 'mykeyhere'

@app.route('/', methods =['GET', 'POST'])
def test():
if "file_urls" not in session:
session['file_urls'] = []
file_urls = session['file_urls']
if(request.method == 'POST'):
file_obj = request.form['username']
session['file_urls'] = file_obj
return redirect(url_for('results'))
return render_template("test.html")

@app.route('/results')
def results():
if "file_urls" not in session or session['file_urls'] == []:
print('session is not created')
return redirect(url_for('test'))
file_urls = session['file_urls']
Image_tensorflow(file_urls,file_urls)
session.pop('file_urls', None)
#print(request.form)
return render_template('results.html', file_urls=file_urls)

if __name__ == "__main__":
app.run(host='0.0.0.0')

和我的HTML页面
<form action = "" method = "POST">
<p>Upload your file here.</p>
<p>
<input type='file' name='username' multiple='multiple' class="btn btn-primary"/>
</p>
<p>
<input type='submit' value='Upload' class="btn btn-secondary"/>

</p>

这是我的image_initial.py文件
import numpy as np
import os
import sys
import tensorflow as tf
import json
from PIL import Image

sys.path.append("..")
from object_detection.utils import ops as utils_ops

from utils import label_map_util
from utils import visualization_utils as vis_util

def Image_tensorflow(xa,ya):
PATH_TO_FROZEN_GRAPH = 'frozen_inference_graph.pb'
PATH_TO_LABELS = 'object-detection.pbtxt'
NUM_CLASSES = 4

detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)


def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)


def image_url(xa, ya):
file_path = 'images/'
file_name = ya
image = xa
f = open((file_path + str(file_name) + ".json"), "w")
f.close
return_dict = {'image': image, 'file': f};
return return_dict


get_image_data = image_url(xa,ya)
image_path= get_image_data['image']

IMAGE_SIZE = (12, 8)


def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image, 0)})

output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict


for img in xa:
image = Image.open(img)
image_np = load_image_into_numpy_array(image)
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = run_inference_for_single_image(image_np, detection_graph)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)

# get_image_data = image_url(sys.argv[1],sys.argv[2])
# image_file = get_image_data['image']


# pass values


import cv2 as cv

image_file = image_path
img = cv.imread('image_file')
i = 0
j = 0
limiter = 0.3

while (i < 100):
if (output_dict['detection_scores'][i] > limiter):
j = j + 1
i = i + 1

# In[17]:


# store the pass values in lists
i = 0
detection_classes = []
detection_boxes = [[]] * j
detection_scores = []
while (i < j):
detection_classes.append(output_dict['detection_classes'][i])
detection_scores.append(output_dict['detection_scores'][i])
detection_boxes[i].append(output_dict['detection_boxes'][i])
i = i + 1

list1 = []
for items in detection_classes:
if items == 1:
list1.append("Angry")
elif items == 2:
list1.append("Sad")
elif items == 3:
list1.append("Neutral")
elif items == 4:
list1.append("Happy")

final_dict = {'DETECTION': list1}

file_to_write_to = get_image_data['file'].name
file_to_write_to = str(file_to_write_to)
text_file = open(file_to_write_to, "w")
text_file.write(json.dumps(final_dict))
text_file.close()
final_path = "images/" + str(ya) + "_annotated" + ".jpg"

# draw bounding boxes
img = cv.imread('xa')
i = 0
for item in detection_classes:
width, height = image.size
ymin = int(detection_boxes[0][i][0] * height)
xmin = int(detection_boxes[0][i][1] * width)
ymax = int(detection_boxes[0][i][2] * height)
xmax = int(detection_boxes[0][i][3] * width)
font = cv.FONT_HERSHEY_SIMPLEX
panel_colour = (182, 182, 42)
bumper_colour = (241, 239, 236)
damage_colour = (0, 255, 0)
text_colour = (255, 255, 255)
bumper_text = (0, 0, 0)
buffer = int(5 * width / 1000)
if (detection_classes[i] == 1):
img = cv.rectangle(img, (xmin, ymin), (xmax, ymax), panel_colour, int(2 * (height / 600)))
cv.rectangle(img, (xmin, (ymin + (buffer * 8))), (xmax, ymin), panel_colour, -1)
cv.putText(img, 'angry', (xmin, (ymin + (buffer * 6))), font, 0.8 * (height / 500), text_colour,
int(2 * (height / 400)), cv.LINE_AA)
elif (detection_classes[i] == 2):
img = cv.rectangle(img, (xmin, ymin), (xmax, ymax), panel_colour, int(2 * (height / 600)))
cv.rectangle(img, (xmin, (ymin + (buffer * 8))), (xmax, ymin), panel_colour, -1)
cv.putText(img, 'sad', (xmin, (ymin + (buffer * 6))), font, 0.8 * (height / 500), text_colour,
int(2 * (height / 400)), cv.LINE_AA)
elif (detection_classes[i] == 3):
img = cv.rectangle(img, (xmin, ymin), (xmax, ymax), bumper_colour, int(2 * (height / 600)))
cv.rectangle(img, (xmin, (ymin + (buffer * 8))), (xmax, ymin), bumper_colour, -1)
cv.putText(img, 'neutral', (xmin, (ymin + (buffer * 6))), font, 0.8 * (height / 500), bumper_text,
int(2 * (height / 400)), cv.LINE_AA)
elif (detection_classes[i] == 4):
img = cv.rectangle(img, (xmin, ymin), (xmax, ymax), panel_colour, int(2 * (height / 600)))
cv.rectangle(img, (xmin, (ymin + (buffer * 8))), (xmax, ymin), panel_colour, -1)
cv.putText(img, 'happy', (xmin, (ymin + (buffer * 6))), font, 0.8 * (height / 500), text_colour,
int(2 * (height / 400)), cv.LINE_AA)
i = i + 1

final_path = "/home/mayureshk/PycharmProjects/ImageDetection/venv/models/research/object_detection/images/" + str(ya) + "_annotated" + ".jpg"
cv.imwrite(final_path, img)


这是堆栈跟踪:
Traceback (most recent call last):
File "/home/mayureshk/PycharmProjects/ImageDetection/venv/lib/python3.7/site-packages/flask/app.py", line 2446, in wsgi_app
response = self.full_dispatch_request()
File "/home/mayureshk/PycharmProjects/ImageDetection/venv/lib/python3.7/site-packages/flask/app.py", line 1951, in full_dispatch_request
rv = self.handle_user_exception(e)
File "/home/mayureshk/PycharmProjects/ImageDetection/venv/lib/python3.7/site-packages/flask/app.py", line 1820, in handle_user_exception
reraise(exc_type, exc_value, tb)
File "/home/mayureshk/PycharmProjects/ImageDetection/venv/lib/python3.7/site-packages/flask/_compat.py", line 39, in reraise
raise value
File "/home/mayureshk/PycharmProjects/ImageDetection/venv/lib/python3.7/site-packages/flask/app.py", line 1949, in full_dispatch_request
rv = self.dispatch_request()
File "/home/mayureshk/PycharmProjects/ImageDetection/venv/lib/python3.7/site-packages/flask/app.py", line 1935, in dispatch_request
return self.view_functions[rule.endpoint](**req.view_args)
File "mayuresh.py", line 25, in results
Image_tensorflow(file_urls,file_urls)
File "/home/mayureshk/PycharmProjects/ImageDetection/venv/models/research/object_detection/image_initial.py", line 209, in Image_tensorflow
cv.imwrite(final_path, img)
cv2.error: OpenCV(4.2.0) /io/opencv/modules/imgcodecs/src/loadsave.cpp:715: error: (-215:Assertion failed) !_img.empty() in function 'imwrite'

最佳答案

您没有得到文件列表,这就是为什么您没有得到多个文件的原因。您需要使用来自用户名输入的表单访问文件列表。

from flask import Flask, render_template, url_for, session, redirect, request

from image_initial import Image_tensorflow

app = Flask(__name__, template_folder='templates')
app.config['SECRET_KEY'] = 'mykeyhere'


@app.route('/', methods=['GET', 'POST'])
def test():
if "file_urls" not in session:
session['file_urls'] = []
file_urls = session['file_urls']
if request.method == 'POST':
file_obj = request.form.getlist("username")
session['file_urls'] = file_obj
return redirect(url_for('results'))
return render_template("test.html")


@app.route('/results')
def results():
if "file_urls" not in session or session['file_urls'] == []:
print('session is not created')
return redirect(url_for('test'))
file_urls = session['file_urls']
Image_tensorflow(file_urls, file_urls)
session.pop('file_urls', None)
return render_template('results.html', file_urls=file_urls)


if __name__ == "__main__":
app.run(host='0.0.0.0')

上面的代码将为您提供文件列表。但是,我尚未对它进行整体测试,因此如果某些其他操作不起作用,您可能需要进行一些修改

编辑:

在堆栈跟踪中,看来问题出在线 Image.open(xa)这里的xa是图像列表,而 Image.open()并不希望有一个列表,您可以遍历每个图像并将其打开。
for img in xa:
Image.open(img)

关于python - 如何在Flask中上传多个文件?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60182030/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com