- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
def show3D(searcher, grid_param_1, grid_param_2, name_param_1, name_param_2, rot=0):
scores_mean = searcher.cv_results_['mean_test_score']
scores_mean = np.array(scores_mean).reshape(len(grid_param_2), len(grid_param_1))
scores_sd = searcher.cv_results_['std_test_score']
scores_sd = np.array(scores_sd).reshape(len(grid_param_2), len(grid_param_1))
print('Best params = {}'.format(searcher.best_params_))
print('Best score = {}'.format(scores_mean.max()))
_, ax = plt.subplots(1,1)
# Param1 is the X-axis, Param 2 is represented as a different curve (color line)
for idx, val in enumerate(grid_param_2):
ax.plot(grid_param_1, scores_mean[idx, :], '-o', label=name_param_2 + ': ' + str(val))
ax.tick_params(axis='x', rotation=rot)
ax.set_title('Grid Search Scores')
ax.set_xlabel(name_param_1)
ax.set_ylabel('CV score')
ax.legend(loc='best')
ax.grid('on')
from sklearn.linear_model import SGDClassifier
metrics = ['hinge', 'log', 'modified_huber', 'perceptron', 'huber', 'epsilon_insensitive']
penalty = ['l2', 'l1', 'elasticnet']
searcher = GridSearchCV(SGDClassifier(max_iter=10000), {'loss': metrics,
'penalty': penalty},
scoring='roc_auc')
searcher.fit(train_x, train_y)
show3D(searcher, metrics, penalty, 'loss', 'penalty', 80)
searcher.cv_results_['mean_test_score']
图中显示最优值为 huber + l2,但是 best_params 给出了不同的结果,这是怎么回事?情节似乎是正确的,取自这里:How to graph grid scores from GridSearchCV?
最佳答案
best_params
是正确的,因为它们来自 searcher.best_params_
。由于 cv 结果被错误地分配给参数,因此必须更新 show3D
:
def show3D(searcher, grid_param_1, grid_param_2, name_param_1, name_param_2, rot=0):
scores_mean = searcher.cv_results_['mean_test_score']
scores_mean = np.array(scores_mean).reshape(len(grid_param_1), len(grid_param_2)).T
print('Best params = {}'.format(searcher.best_params_))
print('Best score = {}'.format(scores_mean.max()))
_, ax = plt.subplots(1,1)
# Param1 is the X-axis, Param 2 is represented as a different curve (color line)
for idx, val in enumerate(grid_param_2):
ax.plot(grid_param_1, scores_mean[idx, :], '-o', label=name_param_2 + ': ' + str(val))
ax.tick_params(axis='x', rotation=rot)
ax.set_title('Grid Search Scores')
ax.set_xlabel(name_param_1)
ax.set_ylabel('CV score')
ax.legend(loc='best')
ax.grid('on')
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import make_classification
train_x, train_y = make_classification(10000,10,2)
grid_param_1 = ['hinge', 'log', 'modified_huber', 'perceptron', 'huber', 'epsilon_insensitive']
grid_param_2 = ['l2', 'l1', 'elasticnet']
searcher = GridSearchCV(SGDClassifier(max_iter=10000), param_grid = {'loss': grid_param_1,
'penalty': grid_param_2},
scoring='roc_auc')
searcher.fit(train_x, train_y)
searcher.best_params_
show3D(searcher, grid_param_1, grid_param_2, 'loss', 'penalty', 80)
searcher.cv_results_['mean_test_score']
Best params = {'loss': 'huber', 'penalty': 'elasticnet'}
Best score = 0.9730321844671845
array([0.97055738, 0.97121098, 0.97126158, 0.97163018, 0.97188638,
0.97186598, 0.96557938, 0.97176798, 0.97196198, 0.95864618,
0.96608918, 0.92235953, 0.96921638, 0.97070898, 0.97303218,
0.96587218, 0.97211978, 0.96902218])
有点丑陋的手动证明,参数 {'loss': 'huber', 'penalty': 'elasticnet'}
确实产生了最高的 cv 结果:
searcher.cv_results_['params'][np.argmax(searcher.cv_results_['mean_test_score'])]
{'loss': 'huber', 'penalty': 'elasticnet'}
关于python-3.x - 如何绘制 sklearn 的 GridSearchCV 结果与参数的关系图?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60553339/
我知道有几个类似的问题被问到,但我的问题仍然没有得到解答。 问题来了。我使用命令 python3 -m pip3 install -U scikit-learn 来安装 sklearn、numpy 和
_train_weather.values : [[ 0.61818182 0.81645199 0.6679803 ..., 0. 0. 1.
如果我有一个数据集X及其标签Y,那么我将其分为训练集和测试集,scle为0.2,并使用随机种子进行洗牌: 11 >>>X.shape (10000, 50,50) train_data, test_d
首先我查看了所有相关问题。给出了非常相似的问题。 所以我遵循了链接中的建议,但没有一个对我有用。 Data Conversion Error while applying a function to
这里有两种标准化方法: 1:这个在数据预处理中使用:sklearn.preprocessing.normalize(X,norm='l2') 2:分类方法中使用另一种方法:sklearn.svm.Li
所以刚看了一个教程,作者不需要import sklearn使用时 predict anaconda 环境中pickled 模型的功能(安装了sklearn)。 我试图在 Google Colab 中重
我想评估我的机器学习模型。我使用 roc_auc_score() 计算了 ROC 曲线下的面积,并使用 sklearn 的 plot_roc_curve() 函数绘制了 ROC 曲线。在第二个函数中,
我一直在寻找此信息,但在任何地方都找不到,所以这是我的镜头。 我是Python 2.7的初学者,我学习了一个模型,感谢cPickle我保存了它,但现在我想知道是否可以从另一个设备(没有sklearn库
>>> import sklearn.model_selection.train_test_split Traceback (most recent call last): File "", li
在阅读有关使用 python 的 LinearDiscriminantAnalysis 的过程中,我有两种不同的方法来实现它,可在此处获得, http://scikit-learn.org/stabl
我正在使用 sklearn,我注意到 sklearn.metrics.plot_confusion_matrix 的参数和 sklearn.metrics.confusion_matrix不一致。 p
我正在构建一个多标签文本分类程序,我正在尝试使用 OneVsRestClassifier+XGBClassifier 对文本进行分类。最初,我使用 Sklearn 的 Tf-Idf 矢量化来矢量化文本
我想看看模型是否收敛于我的交叉验证。我如何增加或减少 sklearn.svm.SVC 中的时代? 目前: SVM_Model = SVC(gamma='auto') SVM_Model.fit(X_t
有人可以帮助我吗?我很难知道它们之间的区别 from sklearn.model_selection import train_test_split from sklearn.cross_valida
我需要提取在 sklearn.ensemble.BaggingClassifier 中训练的每个模型的概率。这样做的原因是为了估计 XGBoostClassifier 模型的不确定性。 为此,我创建了
无法使用 scikit-learn 0.19.1 导入 sklearn.qda 和 sklearn.lda 我得到: 导入错误:没有名为“sklearn.qda”的模块 导入错误:没有名为“sklea
我正在尝试在 google cloud ai 平台上创建一个版本,但找不到 impute 模块 No module named 'sklearn.impute._base; 'sklearn.impu
我在 PyQt5 中编写了一个 GUI,其中包括以下行 from sklearn.ensemble import RandomForestClassifier 。 遵循this answer中的建议,
我正在做一个 Kaggle 比赛,需要输入一些缺失的数据。我安装了最新的Anaconda(4.5.4)具有所有相关依赖项(即 scikit-learn (0.19.1) )。 当我尝试导入模块时,出现
在安装了所需的模块后,我正在尝试将imblearn导入到我的Python笔记本中。但是,我收到以下错误:。。附加信息:我使用的是一个用Visual Studio代码编写的虚拟环境。。我已经确定venv
我是一名优秀的程序员,十分优秀!