gpt4 book ai didi

tensorflow - 使用 tfslim 解码 tfrecord

转载 作者:行者123 更新时间:2023-12-02 17:25:00 25 4
gpt4 key购买 nike

我在 CPU 上使用 Python 2.7.13 和 Tensorflow 1.3.0。

我想使用 DensNet( https://github.com/pudae/tensorflow-densenet ) 来解决回归问题。我的数据包含 60000 个 jpeg 图像,每个图像有 37 个 float 标签。我通过以下方式将数据保存到 tfrecords 文件中:

def Read_Labels(label_path):
labels_csv = pd.read_csv(label_path)
labels = np.array(labels_csv)
return labels[:,1:]

`

def load_image(addr):
# read an image and resize to (224, 224)
img = cv2.imread(addr)
img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_CUBIC)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img.astype(np.float32)
return img

def Shuffle_images_with_labels(shuffle_data, photo_filenames, labels):
if shuffle_data:
c = list(zip(photo_filenames, labels))
shuffle(c)
addrs, labels = zip(*c)
return addrs, labels

def image_to_tfexample_mine(image_data, image_format, height, width, label):
return tf.train.Example(features=tf.train.Features(feature={
'image/encoded': bytes_feature(image_data),
'image/format': bytes_feature(image_format),
'image/class/label': _float_feature(label),
'image/height': int64_feature(height),
'image/width': int64_feature(width),
}))

def _convert_dataset(split_name, filenames, labels, dataset_dir):
assert split_name in ['train', 'validation']

num_per_shard = int(math.ceil(len(filenames) / float(_NUM_SHARDS)))

with tf.Graph().as_default():

for shard_id in range(_NUM_SHARDS):
output_filename = _get_dataset_filename(dataset_path, split_name, shard_id)

with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_ndx = shard_id * num_per_shard
end_ndx = min((shard_id+1) * num_per_shard, len(filenames))
for i in range(start_ndx, end_ndx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i+1, len(filenames), shard_id))
sys.stdout.flush()

img = load_image(filenames[i])
image_data = tf.compat.as_bytes(img.tostring())

label = labels[i]

example = image_to_tfexample_mine(image_data, image_format, height, width, label)

# Serialize to string and write on the file
tfrecord_writer.write(example.SerializeToString())

sys.stdout.write('\n')
sys.stdout.flush()

def run(dataset_dir):

labels = Read_Labels(dataset_dir + '/training_labels.csv')

photo_filenames = _get_filenames_and_classes(dataset_dir + '/images_training')

shuffle_data = True

photo_filenames, labels = Shuffle_images_with_labels(
shuffle_data,photo_filenames, labels)

training_filenames = photo_filenames[_NUM_VALIDATION:]
training_labels = labels[_NUM_VALIDATION:]

validation_filenames = photo_filenames[:_NUM_VALIDATION]
validation_labels = labels[:_NUM_VALIDATION]

_convert_dataset('train',
training_filenames, training_labels, dataset_path)
_convert_dataset('validation',
validation_filenames, validation_labels, dataset_path)

print('\nFinished converting the Flowers dataset!')
<小时/>

我通过以下方式解码它:

with tf.Session() as sess:

feature = {
'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'),
'image/class/label': tf.FixedLenFeature(
[37,], tf.float32, default_value=tf.zeros([37,], dtype=tf.float32)),
}

filename_queue = tf.train.string_input_producer([data_path], num_epochs=1)

reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)

features = tf.parse_single_example(serialized_example, features=feature)

image = tf.decode_raw(features['image/encoded'], tf.float32)
print(image.get_shape())

label = tf.cast(features['image/class/label'], tf.float32)

image = tf.reshape(image, [224, 224, 3])

images, labels = tf.train.shuffle_batch([image, label], batch_size=10, capacity=30, num_threads=1, min_after_dequeue=10)

init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)

coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)

for batch_index in range(6):
img, lbl = sess.run([images, labels])
img = img.astype(np.uint8)
print(img.shape)
for j in range(6):
plt.subplot(2, 3, j+1)
plt.imshow(img[j, ...])
plt.show()

coord.request_stop()

coord.join(threads)
<小时/>

到目前为止一切都很好。但是当我使用以下命令解码 TFRecord 文件时:

 reader = tf.TFRecordReader

keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value='raw'),
'image/class/label': tf.FixedLenFeature(
[37,], tf.float32, default_value=tf.zeros([37,], dtype=tf.float32)),
}

items_to_handlers = {
'image': slim.tfexample_decoder.Image('image/encoded'),
'label': slim.tfexample_decoder.Tensor('image/class/label'),
}

decoder = slim.tfexample_decoder.TFExampleDecoder(
keys_to_features, items_to_handlers)
<小时/>

我收到以下错误。

INFO:tensorflow:Error reported to Coordinator: , assertion failed: [Unable to decode bytes as JPEG, PNG, GIF, or BMP] [[Node: case/If_0/decode_image/cond_jpeg/cond_png/cond_gif/Assert_1/Assert = Assert[T=[DT_STRING], summarize=3, _device="/job:localhost/replica:0/task:0/cpu:0"](case/If_0/decode_image/cond_jpeg/cond_png/cond_gif/is_bmp, case/If_0/decode_image/cond_jpeg/cond_png/cond_gif/Assert_1/Assert/data_0)]] INFO:tensorflow:Caught OutOfRangeError. Stopping Training. INFO:sensorflow:Finished training! Saving model to disk.


要使用 Densenet 解决我的问题,我应该首先修复此错误。有人可以帮我解决这个问题吗?此代码非常适合 https://github.com/pudae/tensorflow-densenet/tree/master/datasets 上提供的花、MNIST 和 CIFAR10 等数据集,但不适用于我的数据。

最佳答案

感谢pudae,问题已经解决了。我需要使用:

 image_data = tf.gfile.FastGFile(filenames[i], 'rb').read()

而不是加载数据。现在效果很好。

 img = load_image(filenames[i])
image_data = tf.compat.as_bytes(img.tostring())

关于tensorflow - 使用 tfslim 解码 tfrecord,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46687348/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com