- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我尝试搜索有关此主题的其他线程,但没有一个修复对我有用。我有一个自然实验的结果,我想显示符合指数分布的事件连续发生的次数。我的 R shell 粘贴在下面
f <- function(x,a,b) {a * exp(b * x)}
> x
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27
> y
[1] 1880 813 376 161 100 61 31 9 8 2 7 4 3 2 0
[16] 1 0 0 0 0 0 1 0 0 0 0 1
> dat2
x y
1 1 1880
2 2 813
3 3 376
4 4 161
5 5 100
6 6 61
7 7 31
8 8 9
9 9 8
10 10 2
11 11 7
12 12 4
13 13 3
14 14 2
> fm <- nls(y ~ f(x,a,b), data = dat2, start = c(a=1, b=1))
Error in numericDeriv(form[[3L]], names(ind), env) :
Missing value or an infinity produced when evaluating the model
> fm <- nls(y ~ f(x,a,b), data = dat2, start = c(a=7, b=-.5))
Error in nls(y ~ f(x, a, b), data = dat2, start = c(a = 7, b = -0.5)) :
singular gradient
> fm <- nls(y ~ f(x,a,b), data = dat2, start = c(a=7,b=-.5),control=nls.control(maxiter=1000,warnOnly=TRUE,minFactor=1e-5,tol=1e-10),trace=TRUE)
4355798 : 7.0 -0.5
Warning message:
In nls(y ~ f(x, a, b), data = dat2, start = c(a = 7, b = -0.5), :
singular gradient
请原谅格式错误,首先在这里发帖。 x 包含直方图的 bin,y 包含该直方图中每个 bin 的出现次数。 dat2 在 14 处截止,因为 0 计数箱会摆脱指数回归,我实际上只需要拟合前 14 个箱。那些计数超过 14 的箱我有生物学理由相信它们是特殊的。我最初遇到的问题是无穷大,但我没有得到这个值,因为没有一个值是 0。按照此处另一篇文章的建议给出合适的起始值后,我得到了奇异梯度误差。我看到的唯一其他帖子有更多的变量,我尝试增加迭代次数,但没有成功。任何帮助表示赞赏。
最佳答案
1) 线性化以获得起始值您需要更好的起始值:
# starting values
fm0 <- nls(log(y) ~ log(f(x, a, b)), dat2, start = c(a = 1, b = 1))
nls(y ~ f(x, a, b), dat2, start = coef(fm0))
给予:
Nonlinear regression model
model: y ~ f(x, a, b)
data: x
a b
4214.4228 -0.8106
residual sum-of-squares: 2388
Number of iterations to convergence: 6
Achieved convergence tolerance: 3.363e-06
1a) 同样,我们可以使用lm
通过写入来获取初始值
y ~ a * exp(b * x)
作为
y ~ exp(log(a) + b * x)
并获取两者的对数以获得 log(a) 和 b 的线性模型:
log(y) ~ log(a) + b * x
可以使用lm
解决:
fm_lm <- lm(log(y) ~ x, dat2)
st <- list(a = exp(coef(fm_lm)[1]), b = coef(fm_lm)[2])
nls(y ~ f(x, a, b), dat2, start = st)
给予:
Nonlinear regression model
model: y ~ f(x, a, b)
data: dat2
a b
4214.423 -0.811
residual sum-of-squares: 2388
Number of iterations to convergence: 6
Achieved convergence tolerance: 3.36e-06
1b) 我们还可以通过重新参数化让它工作。在这种情况下,只要我们按照参数变换来变换初始值,a = 1 和 b = 1 就可以工作。
nls(y ~ exp(loga + b * x), dat2, start = list(loga = log(1), b = 1))
给予:
Nonlinear regression model
model: y ~ exp(loga + b * x)
data: dat2
loga b
8.346 -0.811
residual sum-of-squares: 2388
Number of iterations to convergence: 20
Achieved convergence tolerance: 3.82e-07
所以 b 如图所示,a = exp(loga) = exp(8.346) = 4213.3
2) p线性 另一种更简单的可能性是使用alg="plinear"
,在这种情况下,线性输入的参数不需要起始值。在这种情况下,问题中 b=1
的起始值似乎就足够了。
nls(y ~ exp(b * x), dat2, start = c(b = 1), alg = "plinear")
给予:
Nonlinear regression model
model: y ~ exp(b * x)
data: dat2
b .lin
-0.8106 4214.4234
residual sum-of-squares: 2388
Number of iterations to convergence: 11
Achieved convergence tolerance: 2.153e-06
关于R nls 奇异梯度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18364402/
我正在尝试调整 tf DeepDream 教程代码以使用另一个模型。现在当我调用 tf.gradients() 时: t_grad = tf.gradients(t_score, t_input)[0
考虑到 tensorflow 中 mnist 上的一个简单的小批量梯度下降问题(就像在这个 tutorial 中),我如何单独检索批次中每个示例的梯度。 tf.gradients()似乎返回批次中所有
当我在 numpy 中计算屏蔽数组的梯度时 import numpy as np import numpy.ma as ma x = np.array([100, 2, 3, 5, 5, 5, 10,
除了数值计算之外,是否有一种快速方法来获取协方差矩阵(我的网络激活)的导数? 我试图将其用作深度神经网络中成本函数中的惩罚项,但为了通过我的层反向传播误差,我需要获得导数。 在Matlab中,如果“a
我有一个计算 3D 空间标量场值的函数,所以我为它提供 x、y 和 z 坐标(由 numpy.meshgrid 获得)的 3D 张量,并在各处使用元素运算。这按预期工作。 现在我需要计算标量场的梯度。
我正在使用内核密度估计 (KDE) ( http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.htm
我对 tensorflow gradient documentation 中的示例感到困惑用于计算梯度。 a = tf.constant(0.) b = 2 * a g = tf.gradients(
我有一个 softmax 层(只有激活本身,没有将输入乘以权重的线性部分),我想对其进行向后传递。 我找到了很多关于 SO 的教程/答案来处理它,但它们似乎都使用 X 作为 (1, n_inputs)
仅供引用,我正在尝试使用 Tensorflow 实现梯度下降算法。 我有一个矩阵X [ x1 x2 x3 x4 ] [ x5 x6 x7 x8 ] 我乘以一些特征向量 Y 得到 Z [ y
我目前有一个由几百万个不均匀分布的粒子组成的体积,每个粒子都有一个属性(对于那些好奇的人来说是潜在的),我想为其计算局部力(加速度)。 np.gradient 仅适用于均匀间隔的数据,我在这里查看:S
我正在寻找有关如何实现 Gradient (steepest) Descent 的建议在 C 中。我正在寻找 f(x)=||Ax-y||^2 的最小值,其中给出了 A(n,n) 和 y(n)。 这在
我正在查看 SVM 损失和导数的代码,我确实理解了损失,但我无法理解如何以矢量化方式计算梯度 def svm_loss_vectorized(W, X, y, reg): loss = 0.0 dW
我正在寻找一种有效的方法来计算 Julia 中多维数组的导数。准确地说,我想要一个等效的 numpy.gradient在 Julia 。但是,Julia 函数 diff : 仅适用于二维数组 沿微分维
我在cathesian 2D 系统中有两个点,它们都给了我向量的起点和终点。现在我需要新向量和 x 轴之间的角度。 我知道梯度 = (y2-y1)/(x2-x1) 并且我知道角度 = arctan(g
我有一个 2D 数组正弦模式,想要绘制该函数的 x 和 y 梯度。我有一个二维数组 image_data : def get_image(params): # do some maths on
假设我有一个针对 MNIST 数据的简单 TensorFlow 模型,如下所示 import tensorflow as tf from tensorflow.examples.tutorials.m
我想查看我的 Tensorflow LSTM 随时间变化的梯度,例如,绘制从 t=N 到 t=0 的梯度范数。问题是,如何从 Tensorflow 中获取每个时间步长的梯度? 最佳答案 在图中定义:
我有一个简单的神经网络,我试图通过使用如下回调使用张量板绘制梯度: class GradientCallback(tf.keras.callbacks.Callback): console =
在CIFAR-10教程中,我注意到变量被放置在CPU内存中,但它在cifar10-train.py中有说明。它是使用单个 GPU 进行训练的。 我很困惑..图层/激活是否存储在 GPU 中?或者,梯度
我有一个 tensorflow 模型,其中层的输出是二维张量,例如 t = [[1,2], [3,4]] . 下一层需要一个由该张量的每一行组合组成的输入。也就是说,我需要把它变成t_new = [[
我是一名优秀的程序员,十分优秀!