gpt4 book ai didi

tensorflow - tensorflow 的多个标签

转载 作者:行者123 更新时间:2023-12-02 17:20:49 25 4
gpt4 key购买 nike

我正在尝试修改此代码(请参阅下面的 GitHub 链接),以便我可以使用我自己的数据并使用同一组特征预测多个标签。

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/input_fn/boston.py

当我一次使用一个标签时,它可以正常工作。但是,当我尝试创建一个包含多个标签的张量时,我遇到了问题。有什么建议吗?

我修改后的 LABELS 和 input_fn 看起来像这样:

LABELS = ["Label1", "Label2", "Label3"]

def input_fn(data_set):
feature_cols = {k: tf.constant(len(data_set), shape=[data_set[k].size, 1]) for k in FEATURES}
labels_data = []
for i in range(0, len(data_set)):
temp = []
for label in LABELS:
temp.append(data_set[label].values[i])
labels_data.append(temp)
labels = tf.constant(labels_data, shape=[len(data_set), len(LABELS)])
return feature_cols, labels

这是我收到的错误消息的结尾:

  File "/usr/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/dnn.py", line 175, in _dnn_model_fn
return head.head_ops(features, labels, mode, _train_op_fn, logits)
File "/usr/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/head.py", line 403, in head_ops
head_name=self.head_name)
File "/usr/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/head.py", line 1358, in _training_loss
loss_fn(logits, labels),
File "/usr/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/head.py", line 330, in _mean_squared_loss
logits.get_shape().assert_is_compatible_with(labels.get_shape())
File "/usr/lib/python2.7/site-packages/tensorflow/python/framework/tensor_shape.py", line 735, in assert_is_compatible_with
raise ValueError("Shapes %s and %s are incompatible" % (self, other))
ValueError: Shapes (118, 1) and (118, 3) are incompatible

最佳答案

来自 this link似乎您必须将类(标签)的数量指定为 3:

regressor = tf.contrib.learn.DNNRegressor(feature_columns=feature_cols,
n_classes=3,
hidden_units=[10, 10],
model_dir="/tmp/boston_model")

n_classes 值也许应该设置为 2 而不是 3,看看哪个有效

关于tensorflow - tensorflow 的多个标签,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42888277/

25 4 0